Genetic Rare Variants Affecting Multiple Pathways in Japanese Patients with Palindromic Rheumatism

TAKETO KAWARA¹, KOJI INOUE², SHUNICHI SHIOZAWA³, KAYO OSAWA⁴, and KOICHIRO KOMAI^{1,*}

¹Division of Medical Biophysics, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan; ²Shichikawa Arthritis Research Center, Osaka Rehabilitation Hospital, Hannan, Japan; ³Institute for Rheumatic Diseases, Ashiya, Japan; ⁴Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan *Corresponding author

Received August 29, 2023/Accepted February 14, 2024

Keywords: Palindromic rheumatism, Whole-genome sequencing, Rare variants, Pathway analysis, Disease-related genes

Palindromic rheumatism (PR) is a type of cryptogenic paroxysmal arthritis. Several genes may be involved in PR pathogenesis; however, conducting comprehensive case-control genetic studies for PR poses challenges owing to its rarity as a disease. Moreover, case-control studies may overlook rare variants that occur infrequently but play a significant role in pathogenesis. This study aimed to identify disease-related genes in Japanese patients with PR using whole-genome sequencing (WGS) and rare-variant analysis. Genomic DNA was obtained from two familial cases and one sporadic case, and it was subjected to WGS. WGS data of 104 healthy individuals obtained from a public database were used as controls. We performed data analysis for rare variants on detected variants using SKAT-O, KBAC, and SKAT, and subsequently defined significant genes. Significant genes combined with variants shared between the cases were defined as disease-related genes. We also performed pathway analysis for disease-related genes using Reactome. We identified 2,695,244 variants shared between cases; after excluding polymorphisms and noise, 74,640 variants were detected. We identified 540 disease-related genes, including 1,893 variants. Furthermore, we identified 32 significant pathways. Our results indicate that the detected genes and pathways in this study may be involved in PR pathogenesis.

INTRODUCTION

Palindromic rheumatism (PR) is a cryptogenic paroxysmal arthritis characterized by the periodic repetition of paroxysmal arthritis (1). It has also been suggested to represent a risk factor of developing rheumatoid arthritis (RA) and Sjögren's syndrome (2). Although the pathogenesis remains unknown, it has been suggested that PR not only exhibits the aspects of autoinflammatory diseases caused by abnormalities in the innate immune system, but also the aspects of autoimmune diseases caused by abnormalities in the acquired immune system (3). We have previously identified the splicing variant of the ASC/PYCARD gene encoding an inflammasome signaling protein complex adapter in patients with PR (4). The human leukocyte antigen (HLA) gene has been additionally suggested as a genetic factor of PR (5, 6). Therefore, several genes may be involved in the pathogenesis of PR.

In recent years, next-generation sequencing (NGS) breakthroughs have made it possible to obtain human genome sequences at a relatively lower cost and shorter time. Consequently, whole-exome sequencing (WES) and whole-genome sequencing (WGS) are being widely used, and the progression of various medical studies has accelerated (7). In particular, the identification of disease-related genes is increasing every year, and the number of genes associated with rare diseases in the Online Mendelian Inheritance in Man (OMIM) database is also increasing (8). Although genetic profiling by WES in Chinese patients with PR has been reported, no WGS analysis of PR has been reported (9).

Japanese patients with PR are even rarer, making it difficult to perform case-control analysis with a large sample size. Moreover, case-control studies may overlook rare variants that occur infrequently but play a significant role in pathogenesis. Therefore, in this study, we performed a comprehensive genetic analysis of Japanese patients with PR by combining multiple variant-analysis methods, such as variant analysis, burden test,

Phone: +81-78-796-4593 Fax: +81-78-796-4593 E-mail: komai@kobe-u.ac.jp

Any user may reuse and redistribute the article without requesting permission from the copyright holder only for non-commercial purposes, as long as the original source is properly credited.

and variance component test, in the DNA region of interest. Here, we present the first report identifying disease-related genes in Japanese patients with PR based on rare variant and pathway analyses.

MATERIALS AND METHODS

Samples

Three cases of PR were analyzed in the study: two were family cases involving mothers and children, whereas the third case was sporadic. These patients were examined at the Shichikawa Arthritis Center at Osaka Rehabilitation Hospital, Osaka, Japan. This study was approved by the Institutional Ethical Committee of Kobe University Graduate School of Health Sciences. The study was conducted in accordance with the principles of the Declaration of Helsinki (approval no. 140-3). Case 1: the mother was a 60-year-old Japanese woman who developed PR at the age of 57 years. Blood tests revealed the following data: C-reactive protein (CRP), 2.35 mg/dL; erythrocyte sedimentation rate (ESR), 53 mm/h; matrix metalloproteinase 3 (MMP-3), 19.0 ng/mL; rheumatoid arthritis hemagglutination (RAHA), 40×; anti-cyclic citrullinated peptide (CCP) antibody, 0.6 U/mL (negative); anti-nuclear antibody, 40×. Case 2: a 27-year-old adult who developed PR at the age of 22 years, the daughter of Case 1. Blood tests revealed the following data: CRP, 2.96 mg/dL; ESR, 21 mm/h; MMP-3, 19.5 ng/mL; uric acid (UA), 2.9 mg/dL; RAHA, 40×; anti-CCP antibody, 2.4 U/mL (negative); anti-nuclear antibody, 40×. Case 3: a 42-year-old Japanese woman whose age at onset of PR was unknown. Blood tests revealed the following data: CRP, 0.34 mg/dL; ESR, 11 mm/h; MMP-3, 43.9 ng/mL; UA, 3.2 mg/dL; RAHA, <40×; anti-CCP antibody, 1.0 U/mL (negative); anti-nuclear antibody, 40×; lupus erythematosus test, negative. Written informed consent was obtained from the patient for publication of this report.

We also obtained WGS data of 104 healthy samples from a public database (1000 Genomes Project, Phase 3, JPT samples; https://www.ncbi.nlm.nih.gov/sra) as controls.

WGS

Genomic DNA fractions of patients with PR were isolated using a PAXgene blood DNA kit (QIAGEN; Hilden, Germany). WGS was outsourced to Eurofin Genomics, Inc (Ota-ku, Tokyo, Japan). The assigned index sequences for Cases 1, 2, and 3 were ACAGTG, GTGAAA, and GCCAATAT, respectively. The NGS platform used was HiSeq X (Illumina; San Diego, CA, US), the library insert size was 300 bp, and sequencing was performed using a 150 bp paired-end sequence. The DNA Databank of Japan DRA accession number is DRA015459.

Data analysis

Variant calling was performed using the Genome Analysis Tool Kit (GATK; https://software.broadinstitute.org/gatk/) for every sample, and hg38 was used as the reference sequence. The data from the merged control samples obtained using Bcftools (http://samtools.github.io/bcftools/bcftools.html) and from the case samples were subjected to disease-related variant detection and associated rare variant analysis.

Data analysis for single sample

We performed a quality check for each sample using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and low-quality reads were trimmed using Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic; trim primer sequence, read length was 50 bp or less, the bases of Q value was less than 20 from the start or end of the read). After trimming, a quality check was performed to confirm that the low-quality reads were removed. Trimmed samples were mapped using BWA (http://bio-bwa.sourceforge.net/), followed by variant calling using GATK software.

Detection of disease-related variants

Sequence data of the three case samples were compared using Bcftools to detect hereditary variants. First, variants with a minor allele frequency (MAF) of less than 5% were removed from the merged control samples using Snpsift (http://snpeff.sourceforge.net/SnpSift.html) to obtain a Japanese-specific variant group. Next, the shared variants between the case samples were compared with Japanese-specific variant groups using Bcftools. Variant groups detected only in the shared variants between the case samples were extracted. Japanese-specific variants with a MAF \geq 5% were excluded. We also excluded unreliable variants with a quality of less than 30 and a depth of five or fewer, using Snpsift. Furthermore, the variants were annotated using SnpEff (http://snpeff.sourceforge.net/), variants with an MAF \geq 5% in all populations of the 1000 Genomes Project were removed, and disease-related variants were detected.

Data analysis for associated rare variants

Case and merged control samples were further merged and used for the analysis of associated rare variants. Three methods were applied for the associated rare-variant analysis: Kernel-Based Adaptive Cluster (KBAC) (10) as weighted burden test, Sequence Kernel Association Test (SKAT) (11) as variance component test, and Optimized SKAT (SKAT-O) (12) as variance component test combined with burden test using the analysis tool Rvtests (https://zhanxw.github.io/rvtests/). Each method has its assumptions. For example, KBAC assumes that rare variants affect proteins in the same direction. Samples are divided into cases and controls for each variant. During the analysis, the variant is weighted depending on the group that it is more frequently present in. In contrast, SKAT assumes that rare variants include those that have no effect and those that have different directions of influence. In addition, the variants are weighted according to the frequency at which they present within the population. SKAT-O combines the burden test and variance component test to provide robust detection power for various scenarios. However, if the scenario assumed in each test is strongly relevant, it has less power than these tests. Therefore, in this study, to avoid the detection of genes as false positives, genes that can be detected robustly and found to be significant by SKAT-O, and found to be significant by either KBAC or SKAT, which have different assumed scenarios, were defined as significant genes. Finally, the case samples were individually analyzed, and significant genes in which only unique variants were detected in each case were removed and defined as disease-related genes (Figure 1).

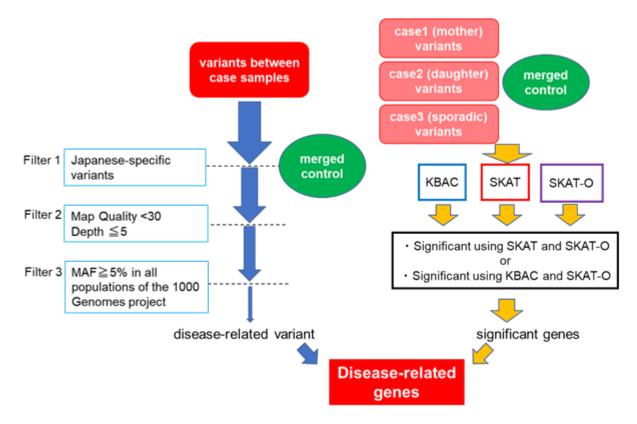


Figure 1. Strategy for the detection of disease-related genes

Japanese-specific variants were obtained from shared variants in case samples (Filter 1: MAF

≥5% in controls), noise was removed (Filter 2: Map Quality <30, Depth ≤5), and
polymorphisms were removed (Filter 3: MAF ≥5% in all populations of the 1000 Genomes
project), and remaining variants were identified as disease-related variants. Rare variant
association analysis (SKAT-O, KBAC, and SKAT) was performed for cases and controls,
and genes significant in SKAT-O and either KBAC or SKAT were defined as significant
genes. Disease-related variants and significant genes were combined as disease-related genes.
KBAC, Kernel-Based Adaptive Cluster; SKAT, Sequence Kernel Association Test; SKAT-O,
Optimized SKAT; MAF, minor allele frequency.

Pathway analysis

Pathway analysis was performed on disease-related genes using the web analysis tool Reactome, which is weighted according to the genes and roles in the pathway and analyzed for significance (https://reactome.org/) (13, 14).

RESULTS

WGS

The WGS results were as follows: In Case 1 (the mother), the number of reads was 508,069,320, the call bases were 76,718 Mbp, and the Q30 was 94.28%. In Case 2 (the daughter), the number of reads was 494,944,820; the call bases were 74,737 Mbp; and Q30 was 94.28%. In Case 3 (sporadic), the number of reads was 661,385,994, the call bases were 99,869 Mbp, and the Q30 was 92.48% (Table I).

Table I. WGS result

Sample	Index	number of reads	Called Bases (Mbp)	%Q30
Case1 (the mother)	ACAGTG	508,069,320	76,718	94.28
Case2 (the daughter)	GTGAAA	494,944,820	74,737	94.28
Case3 (sporadic)	GCCAATAT	661,385,994	99,869	92.48

Number of reads and called bases obtained for each case, percentage of Q30.

Disease-related variants

We detected 4,798,618, 4,780,461, and 4,740,764 variants in Cases 1, 2, and 3, respectively. The number of shared variants between cases was 2,695,244. After the removal of Japanese-specific variants, 128,023 variants were identified as candidates. After removing the unreliable variants, 127,554 variants were detected. Furthermore, after removing variants with an MAF \geq 5% and referencing the 1000 Genomes Project, 74,640 variants were detected (Table II). The classification of detected disease-related variants by region and effect is shown in Table III.

Table II. Disease-related variants

	number of variants
Case1 (the mother)	4,780,461
Case2 (the daughter)	4,740,764
Case3 (sporadic)	4,798,618
Shared variant	2,695,244
after filter1	128,023
after filter2	127,554
after filter3	74,640

The number of shared variants in each case was 2,695,244, and 74,640 Disease-related variants were finally detected after removing polymorphisms and noise.

Table III. Types of disease-related genes

Region	Variant effect	Count
Exon	conservative in-frame deletion	4
	conservative_in-frame_insertion	10
	disruptive_in-frame_deletion	6
	disruptive_in-frame_insertion	14
	frameshift_variant	10
	non_coding_transcript_exon_variant	264
	missense_variant	55
	stop_gained	7
	synonymous_variant	86
Intron	3_prime_UTR_variant	992
	5_prime_UTR_premature_start_codon_gain_variant	25
	5_prime_UTR_variant	169
	downstream_gene_variant	7,661
	intron_variant	11,418
	intergenic_region	45,126
	intragenic_variant	1
	sequence_feature	724
	splice_region_variant	134
	structural_interaction_variant	4
	upstream gene_variant	7,930

Classification of disease-related variants by effect in exon and intron regions.

Disease-related genes

We detected 1,884, 875, and 1,036 significant genes using SKAT-O, KBAC, and SKAT, respectively (P < 0.05). In total, 424 genes were significant based on both SKAT-O and KBAC. In total, 958 genes were significant based on both SKAT-O and SKAT. In total, 1,073 genes were significant based on SKAT-O and based on KBAC or SKAT. These 1,073 genes were defined as significant genes (P < 0.05) (Table IV, Figure 2). Disease-related variants and the significant genes were combined, and 540 genes were identified as disease-related genes (Table V). Furthermore, Table VI presents the variants in which putative annotation on their impact using snpEff was MODERATE or HIGH among the disease-related genes.

Table IV. Significant genes

Collapsing Methods	number of detected genes
KBAC	875
SKAT	1,036
SKAT-O	1,884
Significant genes (Significant using SKAT and SKAT-O or	1,073
Significant using KBAC and SKAT-O)	

Genes that were significant in SKAT-O and significant in KBAC or SKAT were defined as significant genes, and 1,073 significant genes were detected.

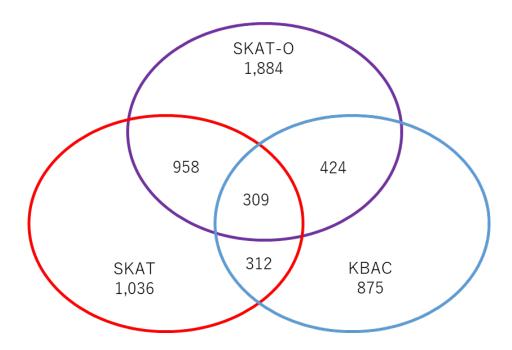


Figure 2. Genes detected by each test
A total of 958 genes were commonly detected in SKAT-O and SKAT, and 424
genes commonly detected in SKAT-O and KBAC. After removing duplicates,
1073 significant genes were finally detected.

Table V. Disease-related genes

					t V. Disca					
ABCG5	BNIPL	CLMP	FBXW8	ING I	LOC101927588	MTNR1A	POLR2J3	SERPING I	SYT1	USP10
ACATI	BORCS8	CLUH	FERMT2	INTS6	LOC101928177	MTNR1B	PPP1R14A	SFTPA2	SYT10	VCPKMT
ACTNI	BORCS8- MEF2B	CLVS1	FGF12-AS1	INTS6L	LOC101928389	MYHAS	PPP1R7	SGCG	SYT11	VGLL3
ADAMTS14	BSND	CNGB3	FGFR2	IPO5	LOC101928535	MYOM1	PPP2CA	SGTA	SYT12	VLDLR
ADAP1	BST1	CNOT6L	FHL1	ISX	LOC101929208	MYRF	PPP4R3A	SH2D3C	SYT14	VLDLR-AS1
ADARB1	C11orf65	COL16A1	FLJ43315	ITGA1	LOC101929563	MYRFL	PPRC1	SH3GL1	SYT15.2	VPS28
ADGRE3	Clorf146	COPS4	FMNI	ITGBL1	LOC101929583	NAA38	PRDM16	SH3PXD2A	SYT16	VPS45
ADGRF2	Clorf56	COX411	FOXN3	JAKMIP1	LOC102031319	NANOS1	PRICKLE 1	SHMTI	SYT17	VRK2
ADNP	CIQTNF7	COX7B2	FOXO1	KATNAL1	LOC102724404	NAPB	PRKAR2A	SHOX2	TFAP4	WASL
ADNP2	C6orf223	CRMP1	FRGIDP	KBTBD6	LOC102724421	NAV2	PRKCD	SIRPA	THEM4	WDR72
AFDN	CA5A	CRTAM	FTX	KCNC2	LOC102724580	NCOA4	PRKCDBP	SKA3	THOP1	WDR86-AS1
AFF2	CAMKK2	CRTAP	GAB2	KCNIP4	LOC102724708	NDST3	PRPS2	SLC15A4	THYI	WDR93
AGRN	CAPN8	CTH	GABPB2	KCNMA1-AS1	LOC105379514	NEIL2	PRR16	SLC15A5	TIAM2	WHRN
AKAP13	CARMN	CTTNBP2	GALC	KDSR	LOC202181	NES	PRRG3	SLC1A3	TLE I	WNK2
AKAP8L	CARS2	CYB5D1	GALNT16	KLHL23	LOC284395	NHS	PRUNE1	SLC22A12	TMC6	WWOX
AKIRIN2	CAST	CYP4F12	GDAP2	KLK14	LOC285000	NHSL1	PTGER4P2- CDK2AP2P2	SLC30A9	TMC8	WWP2
ALKBH8	CATSPER2P1	CYP7B1	GGA2	KPRP	LOC440910	NHSL2	PTGIS	SLC35F6	TMCO5B	YEATS2
ANKDD1A	CATSPERD	DAGLA	GIMAP8	KSR1	LOC643072	NME9	PTPRB	SLC36A1	TMEM114	YPEL5
ANKRD20A5P	CATSPERG	DAP	GKNI	L2HGDH	LRRC72	NNT-AS1	PVT1	SLC39A4	TMEM132E	YWHAG
ANKUB1	CBLN2	DAP3	GNAII	LAMA5	LRRC74A	NOS1	PWWP2A	SLC45A1	TMEM221	ZBTB26
ANOS1	CC2D2A	DAPKI	GNG10	LAMB4	LRRTM1	NOSIAP	PXYLP1	SLC45A4	TMEM235	ZC3HC1
ANTXR1	CCDC14	DAPK2	GPC6	LDHC	LSM12	NSMAF	PYROXD1	SLC52A3	TMEM267	ZCCHC4
ANXA2	CCDC140	DNAH2	GPR65	LINC00032	LY75	NUDCD2	QSER1	SLFN14	TMEM35A	ZFAND2A
AQPI	CCDC141	DNAJC25- GNG10	GRID2IP	LINC00343	LY75-CD302	NXPE4	RAB30	SLIT3	TMEM52B	ZFP1
AQP12B	CCDC142	DNM1	GRK7	LINC00364	MACF1	OLR1	RAB30-AS1	SMARCA5	TMTC3	ZFP14
ARHGAP17	CCDC144B	DNM1P41	GSG1	LINC00365	MAF	OTOGL	RABGAPI	SMARCA5-AS1	TNR	ZMYM2
ARHGAP19- SLIT1	CCDC144CP	DNM1P46	GSG1L	LINC00486	MAF1	P2RX7	RABGAP1L	SMCHD1	TNRC18	ZMYM6
ARHGAP21	CCDC146	DSG2	GSG1L2	LINC00598	MAFA	P3H1	RAD17.2	SMCO4	TNRC18P1	ZNF292
ARHGAP30	CCDC148	DTNA	HDAC9	LINC00649	MAFF	P3H2	RAD52	SMCR8	TNRC6B	ZNF329
ARHGAP42	CCDC148-AS1	DUOX1	HEATR5A	LINC01091	MAFG	P3H2-ASI	RAMP3	SNAP29	TNRC6C	ZNF333
ARHGEF28	CCDC149	DUSP10	HECTD1	LINC01136	MAFG-ASI	PARP6	RASAL2	SNCAIP	TRIM42	ZNF398
ARHGEF38	CD302	DUT	HERC2	LINC01169	MAFIP	PCYT1B-AS1	RASEF	SNTG1	TRIM69.2	ZNF580
ARHGEF38-IT1	CDK8	DUXA	HERC2P2	LINC01221	MAFTRR	PDE4D	RCBTB1	SNUPN	TRIO	ZNF584
ARSA	CECR2	EEF1AKMT1	HERC2P3	LINC01266	MELK	PDE4DIP	REC114	SNX27	TRIOBP	ZNF600
ASB18	CENPI	EFCAB9	HERC2P9	LINC01312	METTL22	PHACTR1	RECQL	SNX33	TSPO	ZNF610
ASTN2-ASI	CEP128	EFNB3	HLA-DQA1	LINC01324	MINOS1	PI4KA	RECQL5	SORBSI	TTC21B	ZNF749
ASXL1	CEP152	EGFL7	HLA-DQB1	LINC01349	MINOS1-NBL1	PIK3CD-AS1	RHEB	SPAM1	TTC23	ZNF845
ATP11B	CEP170P1	ELP4	HLA-DQB1-AS1	LINC01378	MINOS1P1	PIK3CD-AS2	RHPN2	SPANXA2.2	TTC23L	ZSCAN18
ATP2B2	CEP41	EPDR1	HNF1A	LINC01410	MIPOL1	PIK3R6	RNF175	SPANXA2-OTI	TTC39A	ZSCAN21
AVEN	CEP89	EPHA3	HOMER2	LINC01599	MIR1-1HG	PKM	RPE65	SPARC	TTLL13P	ZSCAN5A
B3GLCT	CERS3	ERC2	HPN	LINGO4	MIR31HG	PLEKHG1	RPS10	SPARCL1	TUBB8	
B3GNT6	CERS3-AS1	ERC2-IT1	HPN-ASI	LIPE-AS1	MIR3689A	PLEKHO1	RPS10-NUDT3	SPTSSA	UBASH3B	
BCAS4	CFTR	ESYTI	HTR3C	LOC100128317	MIR4487	PLG	RSU1	SRGAP3	UBE2H	
BCL2L14	CHD7	EYA2	HTT	LOC100129603	MIR548AO	PLK5	RUNX2	SRL	UBE3C	
BCL3	СНДН	FAAP24	IFFO2	LOC100132249		PMS2P3	SAA1	SRSF10	UBL4A	
BIN2	CHODL	FAM174B	IFT88	LOC100506207	MILTIO	PNOC	SAP18	ST6GALNAC5	UNC5R	
BIN2 BMP2K	CHODL-ASI	FAM174B FAM90A1	IF188 IKZF4	LOC100506207		POLG2	SAP18 SARAF	ST6GALNACS SULF2	UNC5E	
BMP8A	CHRM5	FANCD2	IL17D	LOC101927050		POLQ	SCAP	SUPT3H	UNC5D	
BMPR2	CIAPINI	FAR1	ILIRI	LOC101927124	MRPS10	POLRIA	SCAPER	SYN2	UPB1	
BMT2	CIB I	FARSA	IL20RA	LOC101927189	MSC-AS1	POLRIB	SEMA3D	SYNM	USF3	

The 540 disease-related genes were defined as genes that were significant in SKAT-O and significant in either KBAC or SKAT analysis, for which shared variants were detected between cases.

Table VI. Classification of variants with putative annotation on their impact in Disease-related Genes

gene	Putative Impact	variant_effect	Nucleotide_change	Amino_acid_change	rs_ID
ACTNI	MODERATE	sequence_feature modified-residue: phosphoserine	c.515+14T>G		rs743128
ARHGAP21	MODERATE	missense_variant	c.5849G>C	p.Ser1950Thr	rs1127893
C6orf223	MODERATE	disruptive_in-frame_insertion	c.392_397dupCGGCGG	p.Ala131_Ala132dup	rs778896183
CAMKK2	MODERATE	conservative_in-frame_insertion	c.1612_1614dupAAA	p.Lys538dup	rs398021385
COPS4	MODERATE	sequence_feature modified-residue: N6-acetyllysine	c.75-4865_75-4864delTT		rs146126553
DAP	MODERATE	sequence_feature modified-residue: Phosphoserine	c.152+13002dupT		rs57849320
LY75	MODERATE	sequence_feature glycosylation-site: N-linked (GlcNAc)	c.3959-15dupA		rs36120198
SLC22A12	HIGH	stop_gained	c.774G>A	p.Trp258*	rs121907892

Variants of disease-related genes with HIGH or MODERATE impact using snpEff. Variants classified as high are assumed to influence disruptive impact in the protein, probably causing protein truncation, loss of function, or triggering nonsense-mediated decay (e.g., stop gained, frameshift). Variants classified as MODERATE are assumed non-disruptive variants that may change protein function (e.g., missense, in-frame).

Pathway analysis

We detected 32 significant pathways associated with disease-related genes based on Reactome analysis (P < 0.05). Among the significant pathways, four were involved in the regulation of gene expression (four genes), 13 were involved in cell growth and proliferation (16 genes), two were involved in development (six genes), two were involved in the neuronal system (eight genes), three were involved in cell–cell communication (five genes), one was involved in programmed cell death (three genes), one was involved in vesicle-mediated transport (five genes), and six were involved in other functions (four genes) (Table VII). The variants detected in the genes associated with each pathway are shown in Table VIII.

Table VII. Function of each pathway affected by disease-related genes

Function	classification of pathway	Pathway name	Entities P Value	Entities FDR	Submitted entities found	
		RUNX2 regulates genes involved in cell migration	0.002554321	0.729436064	ITGBL1, RUNX2	
regulation of gene expression	Transcriptional regulation by RUNX2	RUNX2 regulates genes involved in differentiation of myeloid cells	0.02427843	0.729436064	RUNX2	
		RUNX2 regulates chondrocyte maturation	0.032202418	0.729436064	RUNX2	
	Gene Silencing by RNA	Post-transcriptional silencing by small RNAs	0.032202418	0.729436064	TNRC6C, TNRC6B	
		Phospholipase C-mediated cascade; FGFR2	0.018517558	0.729436064	FGFR2	
		FGFR2 ligand binding and activation	0.021012613	0.729436064	FGFR2	
	Signaling by FGFR	Negative regulation of FGFR2 signaling	0.025190644	0.729436064	PPP2CA, FGFR2	
	Signature of Terre	PI-3K cascade:FGFR2	0.036489082	0.729436064	FGFR2	
		SHC-mediated cascade:FGFR2	0.044113664	0.729436064	FGFR2	
		FRS-mediated FGFR2 signaling	0.048235436	0.729436064	FGFR2	
		RAC3 GTPase cycle	0.020262898	0.729436064	ARHGAP21, ARHGAP42, TRIO, NHS, DSG2, ARHGAP17, VRK2, ESYT1, FERMT2	
cell growth, proliferation	RHO GTPase cycle	RAC2 GTPase cycle	0.032849692	0.729436064	ARHGAP21, ARHGAP42, TRIO, NHS, DSG2, ARHGAP17, VRK2, ESYT1	
		RACI GTPase cycle	0.045108319	0.729436064	PLEKHGI, TRIO, ARHGAP17, WASL, VRK2, TIAM2, ARHGAP21, ARHGAP42, ARHGAP30, NHS, SRGAP3, ESYT1, FERMT2	
	IRS-mediated signaling	PI3K Cascade	0.030014691	0.729436064	THEM4, GAB2, FGFR2	
		IRS-mediated signalling	0.047507509	0.729436064	THEM4, GAB2, FGFR2	
	PTEN Regulation	Competing endogenous RNAs (ceRNAs) regulate PTEN translation	0.041118945	0.729436064	TNRC6C, CNOT6L, TNRC6	
	Signaling by ERBB4	Nuclear signaling by ERBB4	0.041313975	0.729436064	WWOX, SPARC, ADAPI	
	Netrin-1 signaling	Netrin mediated repulsion signals	0.007768538	0.729436064	UNC5B, UNC5C, UNC5D	
Developmental Biology		Netrin-1 signaling	0.032203918	0.729436064	TRIO, UNC5B, UNC5C, SLIT3, WASL, UNC5D	
	Protein-protein interaction at	Neurexins and neuroligins	0.011078363	0.729436064	NHSL1, SYT1, SYT12, HOMER2, LRRTM1, SYT10 DAP3	
Neuronal System	synapses	Protein-protein interactions at synapses	0.034647971	0.729436064	LINGO4, NHSL1, SYT1, SYT12, HOMER2, LRRTM1 SYT10, DAP3	
	Signal regulatory protein family interactions	Signal regulatory protein family interactions	0.035974514	0.729436064	SFTPA2, SIRPA	
Cell-Cell communication		Regulation of cytoskeletal remodeling and cell spreading by IPP complex components	0.040990706	0.729436064	ACTN1, RSU1	
	Cell junction organization	Cell-extracellular matrix interactions	0.041118945	0.729436064	ACTN1, RSU1, FERMT2	
Programed Cell Death	Caspase activation via extrinsic apoptotic singnaling pathway	Caspase activation via Dependence Receptors in the absence of ligand	0.012667173	0.729436064	DAPK1, UNC5B, DAPK2	
Vesicle-mediated transport	Intra-Golgi and retrograde Golgi-to-ER traffic	Intra-Golgi traffic	0.047806738	0.729436064	NAPB, RAB30, SYT1, VPS4 SNAP29	
	Disease of signal transduction	Signaling by FGFR2 IIIa TM	0.002972328	0.729436064	FGFR2	
		FGFR2 mutant receptor activation	0.008105055	0.729436064	FGFR2	
		Signaling by FGFR2 amplification mutants	0.017303037	0.729436064	FGFR2	
other		Signaling by FGFR in disease	0.018257814	0.729436064	ZMYM2, GAB2, FGFR2	
		Signaling by FGFR2 in disease	0.030014691	0.729436064	FGFR2	
	Diseases associated with surfactant metabolism	Defective SFTPA2 causes IPF	0.038978291	0.729436064	SFTPA2	

Significant pathways (P < 0.05) in the results of pathway analysis using Reactome were classified based on function.

T. KAWARA et al.

Table VIII. List of variants detected in genes via pathway analysis

gene	variant_effect	number of variants
ACTN1	intron_variant	1
ADAP1	intron_variant	3
ARHGAP17	downstream_gene_variant	1
	intron_variant	1
	upstream_gene_variant	1
ARHGAP21	missense variant	1
	intron variant	2
ARHGAP30	intron variant	5
ARHGAP42	intron variant	8
	downstream gene variant	2
CNOT6L	3 prime UTR variant	2
CITOTOL	intron variant	3
	splice_region_variant&intron_variant	1
DAP3	intron variant	5
DAI 3	_	1
D (DV)	downstream_gene_variant	
DAPK1	intron_variant	2
DAPK2	intron_variant	4
DSG2	downstream_gene_variant	1
ESYT1	downstream_gene_variant	1
FERMT2	intron_variant	2
FGFR2	downstream_gene_variant	2
	intron_variant	3
	5 prime UTR variant	1
GAB2	intron variant	2
HOMER2	intron variant	5
ITGBL1	intron variant	10
II GDEI	3 prime UTR variant	1
	downstream gene variant	1
LINICOA		
LINGO4	downstream_gene_variant	1
LRRTM1	downstream_gene_variant	1
NAPB	intron_variant	1
NHS	intron_variant	6
NHSL1	intron_variant	10
PLEKHG1	intron_variant	9
PPP2CA	intron_variant	2
RAB30	intron variant	1
	upstream gene variant	1
RSU1	intron variant	14
RUNX2	intron variant	2
SFTPA2	downstream gene variant	1
SIRPA	intron variant	1
SLIT3	intron variant	10
SNAP29	_	
SNAF 29	intron_variant	2
CD (DC	3_prime_UTR_variant	1
SPARC	intron_variant	1
SRGAP3	intron_variant	6
SYT1	intron_variant	15
SYT10	intron_variant	3
SYT12	intron_variant	1
THEM4	intron_variant	1
	upstream_gene_variant	1
TIAM2	intron variant	9
TNRC6B	intron variant	9
TNRC6C	intron variant	2
TRIO	intron variant	8
UNC5B	downstream gene variant	1
UNC5C	intron variant	8
UNC5D	intron_variant intron variant	8 9
UNCSD	_	
UDG 45	downstream_gene_variant	1
VPS45	intron_variant	8
	downstream_gene_variant	1
VRK2	intron_variant	5
WASL	intron_variant	1
WWOX	upstream_gene_variant	1
	intron variant	41
	downstream gene variant	1
	_6	

The number and effects of variants were detected in genes related to 32 significant pathways.

DISCUSSION

Several HLA class II genes (HLA-DRA, HLA-DR1, and HLA-DR4) are associated with PR (5, 6, 9). Our study detected HLA-DQB1 and HLA-DQB1-AS1 as disease-related HLA genes. The WES report by Zheng et al. (2023) also suggested an association with HLA-DQB1. These findings suggest that several HLA genes are involved in PR.

Interestingly, a nonsense mutation p.W258X in Solute Carrier Family 22 Member 12 (SLC22A12) was detected as the high putative impact variant. SLC22A12 functions as a uric acid transporter that regulates blood uric acid levels, and this gene mutation causes renal hypouricemia (15–17). Uric acid is a powerful antioxidant, and oxidative stress increases when blood uric acid decreases (18). In addition, interleukin 6 is produced by active oxygen via MAP 3 kinase 1 and SAPK kinase kinase and induces inflammation (19). Our finding suggests that SLC22A12 dysfunction may contribute to pathogenesis in PR. The risk of cardiovascular diseases is 4.7-fold higher in patients with RA with hypouricemia than in patients with normouricemia (20). Our result suggests that hypouricemia in patients with PR may be a potential risk of cardiovascular diseases when transitioning to RA.

Pathway analyses revealed multiple gene regulatory pathways involving Runt-related transcription factor 2 (RUNX2), integrin subunit beta-like 1, trinucleotide repeat-containing adaptor 6B (TNRC6B), and TNRC6C. RUNX2 is a well-known transcription factor that induces the differentiation of mesenchymal stem cells into osteoblasts (21). In addition, Homer Scaffolding Protein 2 (HOMER2) and Calcium/Calmodulin Dependent Protein Kinase Kinase 2 (CAMKK2) were detected as disease-related genes. HOMER2 has been suggested as a key regulator of receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis along with Homer Scaffold Protein 3 (22), which was also pointed out in the WES report by Zheng et al. (2023). CaMKK2 has been suggested to regulate osteoblast formation via the Protein Kinase A pathway and osteoclast differentiation via the regulation of Nuclear Factor of Activated T Cells 1 (23). It has been found that some patients with PR show transition into RA (2). Further, abnormal osteoclasts are involved in the pathogenesis of bone destruction in RA transitioning from PR is caused not only by abnormal osteoclasts but also by abnormal bone formation via RUNX2-related pathways.

Multiple mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways related to cell growth and proliferation via fibroblast growth factor receptor 2 (FGFR2), protein phosphatase 2 catalytic subunit alpha, thioesterase superfamily member 4, GRB2-associated-binding protein 2, TNRC6B, TNRC6C, and CCR4-NOT transcription complex subunit 6-like were identified. The MAPK and PI3K signaling pathways activated by FGFR2 have been suggested to be associated with RA (26), and our results suggest the involvement of similar signaling pathways in PR. The MAPK and PI3K signaling pathways activated by FGFR2 may be involved in the pathogenesis of various diseases, including PR.

The involvement of the RHO GTPase cycle including the Rac family small GTPase 1 (RAC1), RAC2, and RAC3 GTPase cycles have shuttled between GDP-bound inactive and GTP-bound active forms via GTP hydrolysis regulated by Rho GTPase-activating protein 17 (ARHGAP17), ARHGAP21, ARHGAP30, ARHGAP42, extended synaptotagmin 1, fermitin family homolog 2 (FERMT2), NHS actin remodeling regulator (NHS), pleckstrin homology and RhoGEF domain-containing G1, SLIT-ROBO Rho GTPase-activating protein 3, TIAM Rac1-associated GEF 2, Trio Rho guanine nucleotide exchange factor (TRIO), VRK serine/threonine kinase 2, and WASP-like actin nucleation-promoting factor (WASL) was suggested. The RHO GTPase cycle has been reported to be involved in various autoimmune diseases as a cytokine regulatory factor (27–29), and involvement of the RHO GTPase cycle in PR has also been suggested.

A netrin-1 signaling pathway, which is regulated by slit guidance ligand 3, TRIO, Unc-5 netrin receptor B (UNC5B), UNC5C, UNC5D, and WASL, and is relevant to development, has been identified. The netrin family of axon-inducing factors is involved in the regulation of macrophages and these proteins represent important molecules in inflammation and immune responses (30–32). Our results suggest that the pathology of PR may be affected by abnormalities in inflammation and immune responses mediated by the netrin-1 signaling pathway.

Multiple pathways involved in cell-cell communication mediated by alpha-actinin-1, FERMT2, Ras suppressor protein 1, surfactant protein A2, and signal regulatory protein alpha were identified. Cell-cell communication is important for mediating the immune response, and these genes have been suggested to be associated with autoimmune diseases (33, 34). Our results suggest that the pathology of PR may be mediated by an abnormal immune response via cell-cell communication.

The pathways involved in intra-Golgi trafficking mediated by NSF attachment protein beta, Ras-related protein Rab-30, synaptotagmin-1, vacuolar protein sorting 45 homolog, and synaptosome-associated protein 29 were identified. Intra-Golgi trafficking is important for facilitating transport of proteins involved in the immune response. The accumulation of mutant proteins in the Golgi promotes the formation of pyrin inflammasomes, which results in the overproduction of inflammation-inducing substances interleukin 1 beta (IL-1 β) and IL-18 (35). Our results suggested that the pathology of PR may be affected by the transport of immune-related proteins.

This WGS study is the second comprehensive NGS analysis of patients with PR, following Zheng et al.'s (2023) study using WES (9). In the present study, we identified many genetic variants not reported by Zheng et al. (2023); however, we found similarities in their association with HLA-DQB1 and functional deviations in osteogenesis. Possible reasons for the different variants found include racial differences, sample size differences, and our report being based on WGS rather than WES, and mainly due to the predominant analysis method we used being focused on rare variants. Genetic variants affecting pathogenesis can be broadly classified into variants that are significant in frequency and variants that are rare in frequency but have a significant effect on pathogenesis. Therefore, while it is difficult to compare the previous study with ours, we believe that the combined results of both studies will cover the genetic variants involved in the pathogenesis of palindromic rheumatism.

We previously identified a splice variant form of ASC, which is the common adaptor of inflammasomes, in patients with PR (4). It was not detected as one of the disease-related genes in the present study, which is attributed to the fact that the association between ASC and PR is not related to rare variants and it is also suggested that ASC is secondarily associated with other regulatory genes; the affected inflammasome pathways related to IL-1 β and IL-18 secretion also represent candidates related to the pathogenesis of PR.

It has been assumed that large sample sizes are required for the analysis of disease-associated rare variants. Zuk et al. reported that a well-powered analysis of associated rare variants in a multifactorial disease would require a sample size of 25,000 cases (36). Conversely, it has been suggested that even with 5,000 cases, it may be possible to detect genes with a 10–20 times higher risk; however, it is difficult to this number of cases for rare diseases. In fact, although future work to confirm our results should aim for larger sample sizes, it is not realistic to collect cases in the thousands, even taking into account the number of all patients with PR in Japan. Thus, considering genetic racial differences, an international framework to collect cases also seems difficult. Therefore, for the analysis of associated rare variants, verification experiments using a combination of multiple analysis methods, multi-omics including proteome and metabolome, and wet experiments are recommended. Our study aimed to detect more related gene groups by combining multiple analyses of associated rare variants, focusing on variants that are shared among cases, and performing pathway analysis, using a small sample size. Further validation is required to advance genetic analysis using a small sample size.

In conclusion, we report the first WGS analysis of PR and identified 540 disease-related genes, including 32 pathways which are significantly associated with PR. This suggests that several rare variants of multiple genes and multiple pathway abnormalities affected by them are involved in the pathogenesis of PR. Our analysis was limited to rare variants shared in all cases owing to the small number of cases in this study; however, we propose that previously overlooked genes represent candidates for disease-related genes.

ACKNOWLEDGEMENTS

We would like to thank Editage (www.editage.jp) for English language editing. This work was supported in part by JSPS KAKENHI (Grant No. 20K07339 to K.K.). None of the authors has any conflicts of interest or any financial ties to disclose.

REFERENCES

- 1. Sanmarti R, Cañete JD, Salvador G. Palindromic rheumatism and other relapsing arthritis. Best Pract Res Clin Rheumatol. 2004 Oct;18(5):647–61.
- 2. Chen HH, Chao WC, Liao TL, Lin CH, Chen DY. Risk of autoimmune rheumatic diseases in patients with palindromic rheumatism: A nationwide, population-based, cohort study. PLoS One. 2018 Jul 26;13(7):e0201340.
- 3. Mankia K, Emery P. Palindromic rheumatism as part of the rheumatoid arthritis continuum. Nat Rev Rheumatol. 2019 Nov;15(11):687–695.
- 4. Suganuma Y, Tanaka H, Kawase A, Kishida A, Yamaguchi M, Yabuuchi A, et al. Expression of a PYCARD/ASC variant lacking exon 2 in Japanese patients with palindromic rheumatism increases interleukin-1β secretion. Asian Pac J Allergy Immunol. 2022 Mar;40(1):81–86.
- 5. Pines A, Kaplinsky N, Orgad S, Gazit E, Frankl O. Familial palindromic rheumatism: a possible association with HLA. Ann Rheum Dis. 1983 Dec;42(6):631–3.
- 6. Hannonen P, Hakola M, Oka M. Palindromic rheumatism in two non-identical brothers with identical HLA including DR4. Ann Rheum Dis. 1985 Mar;44(3):202–4.
- 7. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017 Feb 14;18(1):14.
- 8. Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research, Diagnosis and Treatment. Curr Med Chem. 2018 Jan 30;25(3):404–432.

- Zheng C, Wang F, Sun Y, Zhou Z, You Y, He D, et al. Identification of Distinct Genetic Profiles of Palindromic Rheumatism Using Whole-Exome Sequencing. Arthritis Rheumatol. 2023 Nov;75(11):1947–1957.
- 10. Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010 Oct 14;6(10):e1001156.
- 11. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013 Jun 6;92(6):841–53.
- 12. Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012 Sep;13(4):762–75.
- 13. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. 2017 Mar 2;18(1):142.
- 14. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020 Jan 8;48(D1):D498–D503.
- 15. Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol. 2004 Jul;19(7):728–33.
- 16. Kuriki S, Okada R, Suzuki K, Ito Y, Morita E, Naito M, et al. SLC22A12 W258X frequency according to serum uric acid level among Japanese health checkup examinees. Nagoya J Med Sci. 2011 Feb;73(1–2):41–8.
- 17. Hamajima N, Naito M, Hishida A, Okada R, Asai Y, Wakai K. Serum uric acid distribution according to SLC22A12 W258X genotype in a cross-sectional study of a general Japanese population. BMC Med Genet. 2011 Mar 2:12:33.
- 18. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858–62.
- 19. Matsushita M, Nakamura T, Moriizumi H, Miki H, Takekawa M. Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress. Sci Adv. 2020 Jun 24;6(26):eaay9778.
- 20. Zou YW, Li QH, Zhu YY, Pan J, Gao JW, Lin JZ, et al. Prevalence and influence of hypouricemia on cardiovascular diseases in patients with rheumatoid arthritis. Eur J Med Res. 2022 Nov 21;27(1):260.
- 21. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629–48.
- 22. Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, et al. NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science. 2008 Jan 25;319(5862):476–81.
- 23. Cary RL, Waddell S, Racioppi L, Long F, Novack DV, Voor MJ, et al. Inhibition of Ca²⁺/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. J Bone Miner Res. 2013 Jul;28(7):1599–610.
- 24. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000 Feb;43(2):259–69.
- 25. Komatsu N, Win S, Yan M, Huynh NC, Sawa S, Tsukasaki M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest. 2021 Mar 15;131(6):e143060.
- 26. Fang Q, Li T, Chen P, Wu Y, Wang T, Mo L, et al. Comparative Analysis on Abnormal Methylome of Differentially Expressed Genes and Disease Pathways in the Immune Cells of RA and SLE. Front Immunol. 2021 May 17;12:668007.
- 27. Pernis AB. Rho GTPase-mediated pathways in mature CD4+ T cells. Autoimmun Rev. 2009 Jan;8(3):199–203.
- 28. Peck AB, Nguyen CQ, Ambrus JL. Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjögren's Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice. Int J Mol Sci. 2021 Jul 2;22(13):7176.
- 29. Jarius S, Komorowski L, Regula JU, Haas J, Brakopp S, Wildemann B. Rho GTPase-activating protein 10 (ARHGAP10/GRAF2) is a novel autoantibody target in patients with autoimmune encephalitis. J Neurol. 2022 Oct;269(10):5420–5430.
- 30. van Gils JM, Derby MC, Fernandes LR, Ramkhelawon B, Ray TD, Rayner KJ, et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol. 2012 Jan 8;13(2):136–43.
- 31. Ramkhelawon B, Hennessy EJ, Ménager M, Ray TD, Sheedy FJ, Hutchison S, et al. Netrin-1 promotes

T. KAWARA et al.

- adipose tissue macrophage retention and insulin resistance in obesity. Nat Med. 2014 Apr;20(4):377-84.
- 32. Boneschansker L, Nakayama H, Eisenga M, Wedel J, Klagsbrun M, Irimia D, et al. Netrin-1 Augments Chemokinesis in CD4+ T Cells In Vitro and Elicits a Proinflammatory Response In Vivo. J Immunol. 2016 Aug 15;197(4):1389–98.
- 33. Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, et al. Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther. 2017 Jan 25;19(1):14.
- 34. Jia X, Zhai T, Zhang JA. Circulating Exosome Involves in the Pathogenesis of Autoimmune Thyroid Diseases Through Immunomodulatory Proteins. Front Immunol. 2021 Nov 11;12:730089.
- 35. Nishitani-Isa M, Mukai K, Honda Y, Nihira H, Tanaka T, Shibata H, et al. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J Exp Med. 2022 Jun 6;219(6):e20211889.
- 36. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E455–64.