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In cancer research, small animal models, for example, mice, rats, or rabbits, facilitate the in-depth 

study of biological processes and the effects of radiation treatment that can lead to breakthrough 
discoveries. However, the physical quality of small animal irradiation systems has not been previously 
evaluated. In this study, we evaluate the quality of a small animal irradiation system using 
GAFCHROMICTM film and a Tough Water Phantom. The profiles and percentage depth dose curves for 
several irradiation conditions were measured to evaluate the quality of the irradiation system. The 
symmetry ratios when the table was rotated were 1.1 (no filter), 1.0 (0.5 mm Al filter), 1.0 (1.0 mm Al 
filter), 1.1 (2 mm Al filter), and 1.0 (filter consisting of 0.5 mm Al combined with 0.1 mm Cu). The results 
of measuring the percentage depth dose curve showed that the relative doses were 17.5% (10 mm depth), 
12.4% (20 mm depth), 9.5% (30 mm depth), and 7.4% (40 mm filter) with no filters inserted, 78.0% (10 
mm depth), 61.1% (20 mm depth), 46.9% (30 mm depth), and 35.3% (40 mm depth) when a 1.0 mm Al 
filter was inserted, and 94.4% (10 mm depth), 81.7% (20 mm depth), 68.1% (30 mm depth), and 54.7% 
(40 mm depth) when a filter consisting of 1.0 mm Al combined with 0.2 mm Cu was inserted. These 
physical assessments seem to be necessary especially in vivo experiments because those increase reliability 
of data obtained from small animal irradiation systems. 

 
INTRODUCTION 

Radiotherapy using X-rays is one of the most commonly used therapeutic modalities in cancer treatment. The 
benefit of using X-rays is that they are a type of ionizing radiation that exhibits both wave-like and particle-like 
properties, and can ionize the H2O molecules of tumor cells and cause damage to their DNA [1]. However, these 
effects are not limited to tumor cells, but can also affect normal cells within the tumor stroma [2–3]. The 
cytotoxicity of radiation is mostly mediated through the generation of DNA double-strand breaks (DSBs), as 
demonstrated by the radiosensitivity of defective cells and organisms in the machinery of DSB repair [4–6].  

In general, the high energy (megavoltage) radiation systems that are used clinically are of high quality and 
stable. In contrast, the physical quality of low energy radiation machines has not been evaluated. At our 
institution, low energy radiation machines have been primarily used for in vitro and in vivo studies [7–18]. To 
apply those experimental results to clinical applications, it is essential that the physical quality of the radiation 
machines be evaluated. From this point of view, we assessed the physical quality of a radiation system that used 
EBT3 model GAFCHROMICTM film, which was the first type of radiochromic film that was suitable for use 
with radiation doses [19]. We expect that this report will be useful for either researchers who will use the 
irradiation system at the Kobe University, or those who use similar irradiation system at other institutions 
because the results of the physical assessment of the radiation machine will provide confidence regarding the 
effects of the radiation. 
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MATERIALS AND METHODS 
Radiochromic film 

In this study, EBT3 model GAFCHROMICTM film (Lot # 09151402, International Specialty Products Inc., 
Wayne, NJ, USA) was used. The substrate of this film is matte polyester (125 µm thick) coated with an active 
layer (28 µm thick) over which the matte polyester laminate (125 µm thick) is applied. The active layer contains 
a yellow dye, which is referred to by the manufacturer as a marker dye, and is added to correct for subtle 
differences in the thickness of the active layer. In addition to being symmetric, EBT3 model GAFCHROMICTM 
film features anti-Newton ring particles, which are embedded silica particles within protective polyester layers.  

Calibration of the film measurement was performed using a scanner (ES-10000G, Epson, Tokyo, Japan) 
according to the protocol described by Devic et al. [20]. Each film was irradiated 24 h before being scanned 
using a 48-bit RGB mode. 

 
Radiation machine 

Irradiation was performed using an MBR-1505R2 X-ray generator (Hitachi Medical Co., Tokyo, Japan) at a 
voltage of 150 kV and current of 5 mA, which delivered a dose rate of 0.8 Gy/min. The radiation machine 
system contains detachable metal filters (0.5 mm, 1.0 mm, and 2.0 mm aluminum (Al) filters, and a 0.1 mm 
copper (Cu) filter) to adjust the irradiated energy. 

 
Physical assessment of the radiation machine 

The exit field size of the X-ray generator was 5 cm in diameter, and the beam profiles were measured along 
the transverse and longitudinal axes with and without turn table rotation, as shown in Fig. 1a. To obtain the beam 
profiles of the radiation machine, the EBT3 model GAFCHROMICTM films were set on the surface of a Tough 
Water Phantom (TWP) WD-4005 and WD-4010 (Kyoto Kagaku Co., LTD, Japan) with a source-to-surface 
distance (SSD) setup of 250, 400, and 550 mm (each field size on the turn table was 160, 260, and 360 mm, 
respectively). For the percentage depth dose (PDD) curve measurement, the EBT3 model GAFCHROMICTM 
films were positioned at the beam axis within the TWP. The EBT3 model GAFCHROMICTM films were set at 
depths of 5, 10, 15, 20, 30, and 40 mm in the TWP, and were irradiated without rotation (Fig. 1b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Schematic of the irradiation system used in 
this study, and the experimental setup used for the profile 
measurements. (b) Experimental setup for the PDD curve 
measurements. 
 
 
 
 
 

Calibration curve 
Irradiation was performed to obtain the calibration curve. In a 13-cm diameter field size, films were placed at 

the surface on the TWP at an SSD of 300 mm. Ion chamber measurements were used to determine the dose 
delivered by the x-ray beam at the same depths on the TWP. The TWP was constructed from 25 x 25 cm2 plates, 
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and the films were set between those plates. The EBT3 film calibration curves were determined by means of 
eight film pieces irradiated by 0 to 20 Gy absorbed doses to the water. An EPSON ES-10000G color scanner was 
used to analyze the film in transmission mode. The scanner response stability, intrafilm uniformity, and interfilm 
reproducibility were selected by adjusting the scanning parameters. The optical absorption spectra measurements 
were conducted using both non-irradiated and irradiated EBT3 films to determine the most sensitive color 
windows within the radiation dose ranges used. 

 
Evaluation of the dose distribution in the in vivo experimental setting 

The dose distribution was measured by exposing the EBT3 film to 15 Gy of irradiation with a 1 mm Al filter. 
Mice were anesthetized by the intraperitoneal administration of somnopentyl (0.1 mg/g body weight) and were 
positioned face up. Then, EBT3 films were placed on the anterior or posterior sides of the mice. Four mice were 
placed side-by-side, and the SSD was set to 400 mm. After 24 h, the irradiated films were scanned and analyzed 
with the ImageJ 1.48 v software (National Institutes of Health, Bethesda, MD, USA). This study was approved 
by the Institutional Animal Care and Use Committee (Permission number: P120606-R2) and carried out 
according to the Kobe University Animal Experimentation Regulation. 

 
Analysis 

The symmetries of each profile were calculated using the following equation: 
 
 –The maximum dose ratio = (Dx/D-x)max 
 

where Dx and D-x are the dose at the x and –x positions, respectively, which are symmetric relative to the central 
axis [21]. 

  
RESULTS 

Profile measurements 
The profiles without turn table rotation are shown in Figs. 2a and 2b, and those with turn table rotation are 

shown in Fig. 2c. The symmetry of each profile is listed in Table I. Without turn table rotation, the profiles along 
the longitudinal axis (symmetry: 1.99 ± 0.94) were more symmetric than those along the transverse axis 
(symmetry: 1.03 ± 0.008). In contrast, with turn table rotation, the symmetry improved remarkably (symmetry 
without rotation: 1.99 ± 0.94, symmetry with rotation: 1.05 ± 0.02). The profiles at 250, 400, and 550 mm SSD 
settings with a 1 mm Al filter are shown in Fig. 3. 
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Figure 2. Radiation beam profiles obtained with 
several filter settings. (a) Profiles along the 
transverse axis without rotation. (b) Profiles along 
the longitude axis without rotation. (c) Profiles 
with rotation. 
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Table I. The symmetry of each beam profiles at SSD 400 mm. The ratio of each beam profiles to ideal profiles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The profiles with turn table rotation at 250 
mm, 400 mm, or 550 mm SSD setting. 
 
 
 
 

 
 

Percentage depth dose curves 
Figure 4 showed the PDD curves with or without each filter. Without the filters, the relative doses at depths 

of 10, 20, 30, and 40 mm were 17.5%, 12.4%, 9.5%, and 7.4%, respectively. With the 1 mm Al filter, the relative 
doses at the same depth were 78%, 61.1%, 46.9%, and 35.3%, respectively. With the combined 1 mm Al and 0.2 
mm Cu filters, the relative doses were 94.4%, 81.7%, 68.1%, and 54.7%, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Several PDD curves with 
several filters inserted without the turn 
table rotating. 

 
 
 
 
 

 
Evaluation of the dose distribution in an in vivo experimental setting 

The calibration curve and measurement of the dose distributions using the films are shown in Figs. 5a-b. The 
calculated absolute doses are shown in Table II. With a 1 mm Al filter, the doses to the front of the abdominal 
skin of the mice were 1.68 – 1.89 times higher than those to the back surface. The position of the mice (inner or 
outer) seemed to affect the distribution of the doses. 
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Table. 1: The symmetry of each beam profiles at SSD 400 mm. The ratio of each beam profiles to ideal profiles.

Rotation transverse longitudinal transverse longitudinal transverse longitudinal transverse longitudinal transverse longitudinal
(!) 3.60 1.02 2.00 1.03 1.64 1.02 1.38 1.03 1.31 1.04
(+) 1.08 1.04 1.03 1.06 1.03

Filters
No filter Al 0.5 mm Al 1.0 mm Al 2.0 mm Al 0.5 mm + Cu 0.1 mm
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Figure 5. Absolute dose and dose distribution 
measurements. (a) Calibration curve of the EBT3 film 
used in this study. (b) The dose distribution that was 
obtained from the EBT3 films at the anterior or 
posterior sides of the mice. 
 
 
 
 
 

 
Table II. The absolute dose of the skin of mouse 

 
 
 

DISCUSSION 
In the present study, we found that the beam profile had better homogeneity when the table was rotating 

versus when it was stopped. In addition, our results suggested that the choice of filter affected the depth dose 
profile in the body of the animal; consequently, we recommend researchers carefully select an appropriate filter 
that matches the settings of each experiment. 

In general, researchers use small animal irradiation systems without performing individual quality checks of 
the system. Until now, there have been few reports about the physical evaluation of small animal irradiation 
systems [22]. Mesbahi A et al. reported on the beam spectral characteristics using a Monte Carlo simulation. 
However, there is uncertainty about the beam profile of the entire irradiation field used in this study because the 
authors did not provide the results of beam profile measurements obtained using a film detector. In present study, 
all measurements were performed using a film detector to investigate the beam profile and depth dose curve of 
the entire irradiation field. 

For profile measurements, the profiles when the turn table was rotating exhibited better symmetry than when 
the turn table was stopped. In addition, when the turn table was stopped, the profiles along the longitudinal axis 
exhibited better symmetry than the profiles along the transverse axis. In this study, the transverse axis runs in a 
direction parallel to the anode-cathode axis. The heel effect is more pronounced in the transverse direction, and 
the heel effect has a direct influence on the profiles. Due to the heel effect, the beam was seen to decrease by 
about 60% on the anode side of the field [23]. 

Table. 2: The absolute dose of the skin of mouse

Mouse 1 Mouse 2 Mouse 3 Mouse 4
Anterior side 14.67 15.86 15.59 14.96
Posterior side 8.62 8.38 8.87 8.92

Dose ratio 1.7 1.89 1.76 1.68

Film position
Dose (Gy)

(a)

Isodose (Gy) 
16 Gy -
15 – 16 Gy
14 - 15 Gy
13 – 14 Gy
12 – 13 Gy
11 – 12 Gy
10 – 11 Gy
10 – 5 Gy
5 – 0 Gy

Mouse 1 Mouse 2 Mouse 3 Mouse 4

A
nt

er
io

r s
id

e
Po

st
er

io
r s

id
e

(b)

0 
5000 

10000 
15000 
20000 
25000 
30000 
35000 
40000 
45000 

0 500 1000 1500 2000 

A
D

C

cGy

Calibration curve



EVALUATION OF A SMALL ANIMAL IRRADIATION SYSTEM 

E89 

For PDD measurements, these results indicated that the "no filter" setting was suitable for shallow targets, 
such as skin, although filter settings were identified that were suitable for deep targets, such as the abdomen. In 
addition, the combination of a 1 mm Al filter and a 0.2 mm Cu filter exhibited the most uniform depth dose 
distribution in this study. In general, the body thickness of a mouse or rat is about 2 mm or 4 mm, respectively. 
Our results suggest that the combined 1 mm Al and 0.2 mm Cu filters provided better coverage for the body 
thickness of small animals than that of the other filters. 

The measurement results of the dose distribution from the film indicated that the mouse should be placed 
near the center of the irradiation field. The absolute dose of a mouse that was placed at the edge of the irradiation 
field was 0.63 – 1.19 Gy lower than that of mouse placed near center of the irradiation field. Researchers should 
note the decreased irradiation dose near the edges to avoid misunderstanding their results. For these reasons, the 
position of a mouse in the X-ray generator and the appropriate radiation exit filter should be selected carefully, 
depending on the requirements of each experiment. 

When this x-ray generator was used for in vitro experiments, some researchers inserted several filters on the 
exit of the x-ray generator, while others did not insert any filters. Thus, the combinations of filters used in their 
reports vary widely depending on the intended use: no filter [24-32], a 1 mm Al filter combined with 0.2 mm Cu 
filter [33-35], a 1 mm Al filter [17, 36-39], a 0.5 mm Al filter combined with a 1 mm Cu filter [40], or a 1 mm 
Al filter combined with a 0.5 mm Cu filter [41]. For the in vivo experiments, the filters used in each report also 
vary widely: no filter [25, 42-45], a 1 mm Al filter [17, 36-37, 39], a 0.2 mm Al filter combined with a 0.5 mm 
Cu filter [46], a 0.5 mm Al filter [47], or a 2 mm Al filter [48]. If the depth of the irradiated cells in the dishes 
were shallow in vitro experiments, and the tumors were located below the skin, any combination of filters could 
be selected. Although, if the tumor was seated deeply in the body, it was also possible to use no filters.  

In conclusion, small animal irradiation systems should be used with the turn table rotating. We anticipate that 
this report will prove to be an important reference document for all researchers who plan to use this small animal 
irradiation system henceforth, as it shows how to obtain the most reliable results. 
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