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Abstract

Background Polyploidy is frequently observed in cancer cells and is closely associatedwith
chromosomal instability, which can lead to cancer progression. Polyploid cancers are more
aggressive than diploid cancers, and polyploidy has been shown to be a prognostic marker
for hepatocellular carcinoma (HCC). However, polyploidy is challenging to diagnose.
Currently, no clinically implementable methods are available for diagnosing polyploidy in
cancer.
Methods We established a method for assessing polyploidization in HCC using deep-
learning-based artificial intelligence image recognition models to assess hematoxylin and
eosin-stained pathological images. Using 44 HCCs whose ploidy status had been
determined by chromosome fluorescence in situ hybridization, we evaluated the ability of
our constructed deep learning models to detect HCC ploidy. We then tested the models on
an independent group of 169 liver cancers and applied them to a publicly available dataset.
Results Here we show that our constructed models effectively assess HCC ploidy in a
separate cohort and identify a subset with poor prognosis based on the ploidy
determinations for 169 HCCs. Our pipeline also identifies HCCs with poor prognosis in the
external dataset, with a more significant difference than that for ploidy inferences by
genomic analysis. By exploiting the high processing capacity of artificial intelligence, new
aspectsof polyploidHCC, suchas thehighprevalenceof scirrhousstructures, are identified.
ConclusionsOur findings suggest that ploidy assessment using artificial intelligence-based
pathological image recognition can serve as a novel diagnostic tool for personalized
medicine.

Hepatocellular carcinoma (HCC), the main type of primary liver cancer, is
caused by chronic liver injury, including viral hepatitis and steatotic liver
disease, and is one of the most common causes of cancer-related mortality
worldwide.HCCoften recurs after surgical resection1, and the postoperative
5-year survival rate is less than 60%2. Therefore, identifying HCC patients
with poor prognosis who require careful follow-up is a crucial step toward
achieving personalized medicine for HCC.

Cancer cell polyploidization is frequently detected in various types of
cancers, including HCC3,4. Evaluation of cancer genomes using single

nucleotidepolymorphism (SNP) arrays and inferenceof cancerploidyusing
the ABSOLUTE algorithm5 has shown that approximately 36% of HCCs
exhibit polyploidization3,4. We previously demonstrated that 38% of HCCs
are polyploid by directly evaluating chromosome duplications in formalin-
fixed paraffin-embedded (FFPE) tissues using fluorescence in situ hybri-
dization (FISH)6. Polyploidization is thought to drive cancer evolution and
affect tumor features via various mechanisms, including enhancement of
genomic instability7. Polyploid HCC exhibits an aggressive phenotype, and
its prognosis is significantly poorer than that of diploid HCC6,8. Polyploid
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Plain language summary

Cancer cells often have extra sets of
chromosomes, a condition called polyploidy.
Although polyploidy can be a prognostic
marker for liver cancer, there is currently no
simple way to detect it in clinical settings. In
this study, we developed an artificial
intelligence (AI) system that can analyze
standard pathology images to assess
polyploidy in liver cancer. Our AI accurately
identified cases with poorer outcomes based
on their polyploidy status, both in our own
data and in public datasets. This approach
could offer a practical and accessible tool to
helpdoctorsbetter understandeachpatient’s
cancer and support more personalized
treatment decisions.
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HCCis also likely to exhibit a characteristic pathological appearance, such as
macrotrabecular-massive (MTM) histology and occasional involvement of
cancer cells with giant nuclei, indicating that polyploidy defines a distinctive
subset of HCC6. The diagnosis of polyploidy in HCC would help identify
aggressiveHCC cases and allow optimization of clinical treatment forHCC.

Unfortunately, the determination of cancer ploidy for HCC has been
difficult in routine practice because it requires complicated procedures, such
as genomic analysis, chromosome FISH, or image/flow cytometric analysis.
Importantly, polyploidy can affect the sizes of tumor cells and nuclei9,10 in
addition to the pathological features of HCC, such as the MTM structure6.
Considering this, ploidy could potentially be recognized based on mor-
phological features in pathological images. Moreover, recent remarkable
advances in artificial intelligence (AI)-based deep learning have enabled the
estimation of genetic characteristics of cancers using pathological
images11,12. Thus, AI-based examination of hematoxylin and eosin (HE)-
stained images, which are routinely obtained in pathological practice, is a
promising strategy for identifying polyploid HCC.

In this study, we have developed deep-learning models for diagnosing
polyploid HCC by applying image recognition to pathological images.
Validations using our separate cohort and the publicly available TheCancer
Genome Atlas (TCGA) dataset13 both showed that our model could accu-
rately assess ploidy status in HCC. More importantly, our model identified
approximately one-third of HCCs with poor prognosis within our 169-
patient cohort and the publicly available TCGA dataset, suggesting that
ploidy assessment using our model can meaningfully contribute to HCC
prognosis prediction. The diagnosis of polyploid HCC using AI-based
evaluationofpathological images is feasible in routinemedical practice, even
for many patients. This approach is a novel strategy for identifying
aggressive HCCs, which enables personalized medicine through treatment
optimization.

Methods
Clinical samples and data
A total of 248 HCC tissue samples were obtained from patients who
underwent hepatectomy for HCC between 2017 and 2022 at Kobe Uni-
versity Hospital, Kobe, Japan. Of these, 35 cases were excluded because of
non-curative resection, perioperative death, or insufficient tissue samples.
The remaining 213 cases were divided into datasets and analyzed (Sup-
plementary Fig. 1). FFPE sampleswereused forhematoxylin andeosin (HE)
staining, immunostaining, and multicolored chromosome FISH. Clinical
data, includingage, sex, andetiologyof liver damage,wereobtained fromthe
patient’s medical records. This study was performed in accordance with the
Declaration of Helsinki and approved by the ethics committee of the Kobe
University School of Medicine. Opt-out consent was obtained owing to the
retrospective nature of the study.

HE staining and immunostaining
FFPE tissues were sliced into 5 µm-thick sections and subjected to hema-
toxylin (Sakura 3G, Sakura Finetek, Japan) and eosin (1% Eosin Y solution,
MutoPureChemicals, Tokyo, Japan) or immunostaining.HE-stained slides
were digitized as whole slide images using a Research Slide Scanner VS200
(EVIDENT, Tokyo, Japan) with a ×40 objective lens and subsequently
analyzed using OLyVIA v4.1 software (EVIDENT, Tokyo, Japan). Immu-
nohistochemistry was performed using primary antibodies against UBE2C
(1:500, ab252940, Abcam) and secondary antibodies, including anti-rabbit
(MP-7401, Vector Laboratories, Burlingame, CA, USA) and anti-mouse
(MP-7402, Vector Laboratories) antibodies. The immunohistochemically
stained slides were photographed under a BX53 light microscope (EVI-
DENT, Tokyo, Japan).

Chromosome FISH and identification of polyploid HCCs
FFPE samples of 5 µm thickness were stained bymulticolored chromosome
FISH, using a previously published method6. Briefly, FISH was performed
using chromosome enumeration DNA FISH probes targeting chromo-
somes 7 (#6J36-77), 11 (#6J54-21), and 16 (#5J10-26) following the

manufacturer’s instructions (Abbott Laboratories Ltd., IL). The slides were
denatured at 72 °C for 6min, hybridized overnight at 37 °C, and counter-
stainedwithDAPI. FISH slideswere examined at 100×magnification under
a fluorescence microscope (BZ-X710, Keyence). The predominant number
of signals for the three stained chromosomes in the tumor nuclei was
determined to be the tumor chromosome copy number. To assess HCC
ploidy, we calculated the average copy number of the three chromosomes.

Image processing
Three or more regions of interest (ROIs) that exhibited an appropriate
appearance without excessive bleeding or necrosis were selected from each
whole-slide image. Each ROI had an area of approximately 4 mm2 and was
divided into 2048 × 2048-pixel squares. We obtained an average of 251
image tiles for each case, eachmeasuring 2048 × 2048 pixels, and used them
for ploidy diagnosis (Supplementary Fig. 2). The length per pixel in these
images was 133.477 nm, ensuring sufficient resolution for the analysis.

Deep learning
For deep learning-based classification of tumor ploidy, we adopted multi-
instance learning to accommodate a large 2048 × 2048 pixel image size
(Supplementary Fig. 3). Each 2048 × 2048-pixel image was further divided
into small patches of 256 × 256 pixels, and 42,240 patches were input into a
first-stage image classificationmodel such as a conventional neural network
(CNN) or Vision Transformer (ViT)14. Among the 42,240 patches, 25,024
and 17,216 were labeled as diploid and polyploid, respectively, according to
the chromosome FISH results. The outputs of the patch-level model were
aggregated and input into a second-stage model. This approach allowed us
to extract local information from the image in the first stage and aggregate
information from the entire image in the second stage.

In the first-stage image classification, ImageNet-pre-trained CNN
models, includingDenseNet12115, ResNet50d16, and EfficientNet_B017 were
utilized. All ImageNet-pretrained models used in our study were obtained
from the external source, the timm library. Specifically, we used ResNet50
from https://huggingface.co/timm/resnet50.a1_in1k, DenseNet from
https://huggingface.co/timm/densenet121.tv_in1k, and EfficientNet from
https://huggingface.co/timm/tf_efficientnet_b0.ns_jft_in1k. Their outputs
immediately before the last global average pooling layer were extracted, and
the extracted features from all patch images were concatenated and input
into the global average pooling layer, followed by a linear layer using a
method known as PANDA concat tile pooling18. To develop ViT-based
models in the first-stage14, we used two self-supervised and pre-trained ViT
models. One was pre-trained on our original imagesDataset 1 through self-
distillation with no labels (DINO)19, a type of self-supervised learning. The
other was an encoder of the publicly available hierarchical image pyramid
transformer (HIPT)20, which was pre-trained on patch images created from
whole slide images in TCGA with DINO. We used a self-supervised pre-
trained model to extract HCC-specific information from histopathological
images. A learning rate of 0.0005 and a weight decay of 0.04 with the
AdamW optimizer21 were used to train our original images with DINO.
Training was conducted for 300 epochs, and data augmentation was per-
formed according to the original DINOparameters.Weused theViT-Small
model for all theViTmodels. Theoutputs fromthe last four layers of theViT
were concatenated and input into two-layered gated recurrent unit net-
works and a linear layer. This approach aims to improve the performance by
utilizing the outputs from multiple layers of ViT.

The entire model was trained in two end-to-end stages for 10 epochs
using anAdamWoptimizer with a learning rate of 0.001 and aweight decay
of 0.00005. During end-to-end training, we focused on both the local patch-
level information and the global context of the target.All layerswere set to be
trainable in theCNN-basedmodels, whereas theweights of thefirst 10 or 11
layerswere frozen in theViT-basedmodels to retain theknowledge acquired
through self-supervised learning. We named the model with 11 fixed
weights andonly the remaining layer trainable as ‘unfrozen1,’ and themodel
with 10 fixed weights and two remaining layers trainable was called
‘unfrozen2.’ ‘HIPT_unfrozen2’ thus refers to a model that utilizes a self-

https://doi.org/10.1038/s43856-025-00967-8 Article

Communications Medicine |           (2025) 5:270 2

https://huggingface.co/timm/resnet50.a1_in1k
https://huggingface.co/timm/densenet121.tv_in1k
https://huggingface.co/timm/tf_efficientnet_b0.ns_jft_in1k
www.nature.com/commsmed


supervised pre-trained ViT initially trained on publicly available TCGA
image data usingHIPT. In thismodel, theweights of the first ten layers were
fixed, and the remaining two layers were trainable. In one study, the
influence of staining differences between facilities was mitigated by
converting the input images to a gray scale. Grayscale conversion was
performed using OpenCV’s cv2.COLOR_RGB2GRAY implementation
(https://ieeexplore.ieee.org/document/6240859). The model constructed in
this experiment is referred to as EfficientNetB0_ Gray.

The performance of the model was validated by dividing the
dataset consisting of 44 cases collected at Kobe University Hospital
(Dataset 1) into five folds. The ploidy status of these 44 cases was
determined using chromosomal FISH. In each iteration, one fold was
designated for validation, and the remaining folds were used for
training. This process was repeated five times for each single
experiment. The predictions for the test data were generated using
the average outputs of the five trained models. The cutoff values were
determined based on the Youden index22 from the ROC curve in the
analysis of Dataset1 and were applied in all analyses.

A custom-built computer server with a CPU (EPYC 7543, Advanced
Micro Devices, Inc., Santa Clara, CA, USA) and GPU (A100, 80 GB,
NVIDIA Corporation, Santa Clara, CA, USA) was used for all calculations.
The operating system used was Ubuntu 20.04 LTS. The implementation of
all deep learning models utilized Python 3.9 and PyTorch 1.12.

Evaluation in a large test cohort
A separate cohort of 169 patients (Dataset 3), which was obtained at
Kobe University Hospital but not used to construct AI models, was
used to validate the AI analysis. Among these, the ploidy status of 38
cases (Dataset 2), a subset of Dataset 3, was determined by FISH. For
each case, approximately 280 tiles of 2048 × 2048 pixel images were
analyzed using our trained AI models to assess the polyploidization
probability of the tumor within each image. The average of these
probabilities was calculated as the overall probability of poly-
ploidization in each case. ROC curve analysis using overall poly-
ploidization probability and color map analysis using image-level
polyploidization probability were performed using R software (ver-
sion 4.1.2, R Foundation for Statistical Computing).

TCGA dataset analyses
Whole-slide images of HE-stained FFPE tissues, which are publicly
available in TCGA datasets13 (Dataset 4), were analyzed. The dataset
consisted of 350 HCC cases whose whole-genome duplication and
aneuploidy status had been previously analyzed using the SNP Array5.
Hematoxylin and eosin (HE)-stained images and clinical data, including
age, sex, tumor stage, grade, vascular invasion, and background liver
fibrosis, are also archived in the TCGA database. When setting rectan-
gular ROIs, we attempted to include a sufficiently wide area with well-
defined tumor tissue images. However, in 69 cases, more than one-
quarter of the ROIs contained features that were unsuitable for patho-
logical tumor diagnosis, such as necrosis, severe fibrosis, and
contamination with non-tumor components. These cases were categor-
ized as unsuitable. We also conducted an analysis that excluded them.

Dimensionality Reduction (t-SNE) Analysis
The 2048 × 2048-pixel input images were analyzed using the HIPT_un-
frozen2 model, and the embedding vectors for each image immediately
before the final linear layer were compressed into two dimensions using
t-distributed stochastic neighbor embedding (t-SNE)23 (random_state =
2023, perplexity = 10).

Statistics and reproducibility
Statistical analyses were performed using the Mann–Whitney U test, Stu-
dent’s t-test, chi-square test, Pearson’s correlation test, or Kaplan–Meier
survival analysis using the R software (version 4.1.2, R Foundation for
Statistical Computing) and Microsoft Office Excel (Microsoft).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Development of an AI-based image recognition model to esti-
mate HCC ploidy
First, we constructed a model to evaluate the ploidy status of HCC using
deep learning andCNN-based image classification.A total of 44 caseswhose
ploidy status had been determined by chromosome FISH in our previous
study6 were used as the training data. The training set included 27 diploid
and 17polyploidHCCcases.After obtaining awhole-slide image of theHE-
stained slide for each tumor, we selected three or more ROIs showing the
representative pathological appearance of the tumor (Fig. 1a). Each ROI
was divided into 2048×2048-pixel tiles, and the tiles were subdivided into
256 × 256 patches for input into the deep-learning algorithm (seeMaterials
andMethods). Deep learning for tumor ploidy classificationwas performed
by training 42,240 small-patch images. The models calculated the prob-
ability of tumor polyploidization in each 2048 × 2048-pixel tile, and the
average value across all tiles for each tumor was defined as the polyploidy
score for the tumor (Fig. 1b, Supplementary Fig. 4).

We first used three CNN-based image classification models:
DenseNet12115, ResNet50d16, and EfficientNet_B017. The validity of the
models was assessed by analyzing their receiver operating characteristic
(ROC) curves and areas under the curve (AUC)24 (Fig. 1c, Supplementary
Fig. 5). Five-fold cross-validation revealed that all three models achieved
high AUC values (0.998−1.0, Fig. 1d). For example, with the optimized
cutoff value (0.457) of polyploidy score determinedbasedon theROCcurve,
the EfficientNet_B0-based model exhibited high accuracy, sensitivity, and
specificity (0.977, 1.0, and 0.963, respectively, Fig. 1d, Supplementary Fig. 6).
These findings indicate that CNN-basedmodels can be used to evaluate the
HCC ploidy status using pathological HE images.

AI-based image recognitionsuccessfullyassessedHCCploidyat
a low calculation cost
The coloration of HE staining is known to vary due to factors such as
fixation conditions and staining protocols, potentially affecting AI model
performance25,26. To address this, we constructed a model using Effi-
cientNetB0 on grayscale-converted images to minimize the impact of such
variability. The constructed EficientNetB0_graymodel showed a highAUC
value (0.998), comparable to that of the original CNN-based models, sug-
gesting that the cellularmorphological information obtained fromgrayscale
images was sufficient to evaluate HCC ploidy (Fig. 1c, d, Supplemen-
tary Fig. 6).

We also developedmodels using ViT-based architectures, which incur
lower calculation costs than CNN-based image recognition. Two and one
models were constructed using HIPT20 and DINO19, respectively, both of
which enabled the scalability of ViT to large images via self-supervised
learning (see Materials and Methods). These encoders were trained on
TCGA or liver pathology images obtained at our institution. By freezing
parts of themodel during training, overfitting can bemoderated, evenwhen
the labeled data are insufficient. In particular, because it allows for easy
replacement of thefirst stagewith other publicly availablemodels trained on
pathology images using self-supervised learning, model construction using
HIPT requires a shorter learning time than CNN-based models. All three
models exhibited high accuracy and AUC values that were comparable to
those of the CNN models (Fig. 1d, Supplementary Fig. 6).

AI-based ploidy assessment identified polyploid HCCcaseswith
poor prognosis within a large cohort
We examined whether our constructed AI models could properly assess
HCC ploidy using a separate dataset. Tumor ploidy was determined using
chromosome FISH in 38 new HCCs (Dataset 2) that were not included in
the first dataset (Dataset 1). Their polyploidy scores were then calculated by
analyzing their HE images using AI models. The sensitivity, specificity, and
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Fig. 1 | Construction of AI models to determine ploidy status of HCC. a Scheme
for the construction of AI-based image recognition models for determining HCC
ploidy. b Representative HE-stained images of ROIs in diploid and polyploid HCC.
The probabilities of HCC polyploidization in the corresponding 2048 × 2048-pixel

tiles are shown in a color map. Scale bar, 200 μm. c ROC curves and AUC values of
representative AI models in cross-validation. The data for the other models are
shown in Supplementary Fig. 5. d Evaluation and comparison of the constructed AI
models.
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proportion of polyploid HCC were determined based on the cutoff values
determined in the analysis of Dataset 1 (Fig. 1d, Supplementary Fig. 6).
Among themodels examined, some, including the twoHIPT-basedmodels,
exhibited relatively high AUC values over 0.8 (Fig. 2a, b). The decrease in
accuracy observed in Dataset 2 compared to Dataset 1 may be attributed to

the fact that cases with typical histology of diploid and polyploid cancers
were used for training in Dataset 1, while cases in Dataset 2 were selected in
an unbiased manner.

To further evaluate the utility of AI-based polyploid HCC identifica-
tion, a large cohort of 169 HCC cases (Dataset 3) was examined using AI

Fig. 2 |ValidationofAImodels in separate datasets. a,bPerformance ofAImodels
in the validation assessments. The ploidy statuses of 38 HCCs (determined by
chromosome FISH) were compared with the ploidy statuses, as assessed by AI
models. ROC curves of the representative AI models are shown in (a). c Prognostic

stratification based on ploidy assessments by the AI models. A total of 169 HCCs
were analyzed. d Kaplan–Meier curves of overall survival. Statistical difference was
determined by log-rank test. The three AI models that identified a significant dif-
ference in prognosis between diploid and polyploid HCCs in (c) are shown.
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models (Fig. 2c). In particular, the EfficientNet_B0-based and HIPT_un-
frozen2 models diagnosed a number of polyploid HCC cases proportional
to their prevalence, as shown inprevious reports (36–38% 3,6). By identifying
polyploidy in HCC, the EfficientNet_B0-based and HIPT_unfrozen2
models discriminatedHCCpatientswith significantlyworse overall survival
after surgery (Fig. 2c, d, Supplementary Fig. 7). These findings indicate that
AImodels, especially the HIPT_unfrozen2model, are useful for identifying
polyploid HCC and predicting poor prognosis.

Analysis of a large cohort revealed the characteristics of
polyploid HCC
TheHIPT_unfrozen2model, which exhibited themost optimal features for
ploidy determination among the constructed models, was used to investi-
gate the characteristics of polyploid HCC by analyzing a large cohort. In
Dataset 3, consistingof 169 cases, 113 and56caseswerediagnosed asdiploid
and polyploid HCC, respectively, using the HIPT_unfrozen2 model. As
observed in other datasets, where no associations were found between
tumor ploidy and age, sex, or bodymass index (SupplementaryTable 1), the
two groups showed no significant differences in these variables (Table 1,
Supplementary Fig. 8). Consistent with our previous results, serum alpha-
fetoprotein (AFP) levels were significantly higher in polyploid HCC than in
diploid HCC, whereas tumor size and stage were comparable between the
two groups (Table 1, Fig. 3a). Polyploid HCC was also significantly asso-
ciated with a high prevalence of poor differentiation and exhibitedMTMor
scirrhous structures (Table 1, Fig. 3b, c). Polyploid giant cancer cells
(PGCCs), which exhibit a distinct appearancewith prominently large nuclei
or profound multinucleation, are frequently observed in polyploid HCC
(Table 1). Furthermore, the expression of UBE2C, which we previously
reported as amarker suggestive of polyploidHCC,was significantly elevated
in polyploidHCC relative to levels in diploid HCC (Fig. 3d). These findings
confirm the characteristics of polyploidHCCdemonstrated in our previous
study and suggest accurate ploidy evaluation by our HIPT_unfrozen2
model. In addition,most polyploidHCCs diagnosed using theAImodel did
not exhibit well-defined pathological features characteristic of polyploid
HCC (Fig. 3e), indicating that the AI model comprehensively assessed
ploidy in HCC, considering a complex array of histological information
beyond mere tumor structures and differentiation status.

To further explore the characteristics of polyploid HCC, we visualized
case-by-case correlations between the polyploidy scores and clin-
icopathological features (Fig. 3e). In addition, data derived from all 2048 ×
2048-pixel tile images of the 169 HCCs were compressed into two dimen-
sions and visualized using t-SNE plots (Fig. 3f). These plots validated that
high serum AFP levels were correlated with high polyploidy probability
values calculated using our AI models. Interestingly, HCCs with high
polyploidy scores were predominantly positive for PGCCs, highlighting
their importance in inferringHCCpolyploidy (Fig. 3e). In contrast, hepatitis
etiology seemed to exert little influenceonHCCploidy, andHCCswithhigh
polyploidy scores developed in livers with viral hepatitis and steatotic liver
diseases (Fig. 3e, f). Our investigation of poorly understood features of
polyploid HCC in a large cohort, utilizing the high-throughput analysis
capabilities of AI models, verified recently revealed characteristics and
provided additional insights.

TheAImodel robustly identifiedpolyploidHCC inapublicdataset
and predicted a poor prognosis
To further verify the utility of the AI-based ploidy discrimination models,
we analyzed the HE images of 350 HCC cases in the public TCGA dataset
using our representative models, EfficientNet_B0, EfficientNet_B0_gray,
andHIPT_unfrozen2. Ploidy assessments obtainedby theseAImodelswere
compared with a prior determination of genome duplication (GD) by SNP
array analysis of tumor genomes4,5. Assessment using the HIPT_unfrozen2
model showed a strong correlation with the GD status determined by
genomic analysis (Fig. 4a). The other two models did not demonstrate a
significant correlation. Using the GD status based on genomic analysis as a
reference, the sensitivity and specificity of theHIPT_unfrozen2model were

0.77 and 0.41, respectively. Similar to Dataset 3, the polyploid HCC in the
TCGA dataset identified by the HIPT_unfrozen2 model showed a high
prevalence ofPGCCandelevatedAFP serum levels, supporting the idea that
the AI model can robustly evaluate HCC ploidy status from pathological
images obtained under heterogeneous conditions at various facilities
(Table 2).

We further examinedwhether theHIPT_unfrozen2modelwas helpful
in identifying a subset of HCC with poor prognosis. As expected, GD-
positive HCC evaluated by genomic analysis showed a trend toward poor
prognosis compared to GD-negative HCC, although the difference was
weak and insignificant (Fig. 4b). In notable contrast, polyploid HCC iden-
tified by the HIPT_unfrozen2 model exhibited markedly poorer prognosis
than their diploid counterpart (Fig. 4b).Among the350HCCs, the imagesof
188 cases were designated suboptimal for diagnosis because a substantial
proportion of their ROIs were affected by necrosis, severe fibrosis, and
contamination with nontumor components. Importantly, however, the
HIPT_unfrozen2 model similarly distinguished prognostic differences
depending on ploidy status, regardless of the inclusion of these 188 sub-
optimal cases, highlighting the robust diagnostic capacity of the AI model
(Supplementary Fig. 9).

To explore the reasons for the differences in ploidy-related prognostic
prediction capability between the HIPT_unfrozen2 model and genomic
analysis, TCGA cases were categorized into four groups based on the AI
(diploid or polyploid) and genomic results (GD-positive or GD-negative).
As expected, GD-positive polyploid HCC had a significantly poorer prog-
nosis than GD-negative diploid HCC (Fig. 4c). Interestingly, polyploid but
GD-negative HCC exhibited a poor prognosis, comparable to that of GD-
positive polyploid HCC. In addition, diploid but GD-positive HCC showed
a good prognosis, similar to that of GD-negative diploid HCC. The HIP-
T_unfrozen2model consistently identifiedHCCwith a significantly poorer
prognosis regardless of the SNP array results, leading to its superior prog-
nostic prediction over genomic analysis (Fig. 4c).Moreover, among theGD-
negativeHCC identified using the SNP array, AI-diagnosed polyploidHCC
had significantly more chromosomal aberrations than their diploid coun-
terparts (Fig. 4d), suggesting that the AI model distinguished HCC with a
poor prognosis by detecting chromosomal instability and polyploidy from
pathological images. These findings indicate that our AImodel interpreting
HCCploidy status frompathological images can robustly identifyHCCwith
poor prognosis across diverse conditions in multiple facilities.

The HIPT_unfrozen2 model outperforms conventional methods
for estimating HCC ploidy from pathological images
Finally, we compared HIPT_unfrozen2 with existing methods for esti-
mating HCC ploidy from pathological images, evaluating their perfor-
mance in ploidy classification and prognosis prediction. In our previous
study, we proposed a scoring system (PUB score) that combines PGCC
detection in HE-stained sections with immunostaining for UBE2C to
infer polyploidization in HCC6. When tumors exhibiting both PGCC
presence and UBE2C overexpression were classified as polyploid, the
PUB classification achieved an accuracy of 0.76 (sensitivity: 0.91, speci-
ficity: 0.70) in Dataset 2 (Fig. 5a), which is comparable to that of the AI
models. Among the 118 cases in Dataset 3 with available UBE2C
immunostaining, the PUB classification identified a group with a poor
prognosis, although the difference was not statistically significant
(p = 0.063, Fig. 5b). In contrast, HIPT_unfrozen2 distinguished the poor
prognosis group more clearly and significantly in the same cases, sug-
gesting that while the combination of PGCC and UBE2C is a useful
marker, AI-based ploidy assessment is more effective for predicting
prognosis through tumor ploidy classification (p = 0.017, Fig.5c).

We also comparedHIPT_unfrozen2 with another published AI-based
tool that assesses tumor ploidy by evaluating nuclear morphology, the HE
Image Processing pipeline (HEIP)27, using the same HE-stained images
analyzed in our study. After segmenting cell nuclei, we identified tumor
nuclei using the HEIP algorithm and assessed tumor ploidy based on two
morphological features: nuclear area, which is known to correlate with
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ploidy28, and thenuclearmajor axis,whichwas reported as themost strongly
correlated feature in the original study27. As expected, both the median
tumor nuclear area and the median nuclear major axis extracted by HEIP
showed a highly significant correlation with the polyploidy score calculated
by HIPT_unfrozen2, suggesting that HEIP accurately captured tumor
nuclear morphology (Fig. 5d, e). Using Dataset 2, where tumor ploidy was
confirmed by chromosome FISH, we assessed the performance of HEIP in
tumor ploidy classification through ROC analysis, yielding AUC values
comparable to that ofHIPT_unfrozen2 (0.761 for nuclear area and 0.828 for
the nuclearmajor axis, Fig. 5f, g).We further examined the prognostic utility
of HEIP-based tumor ploidy assessment in Dataset 3. When tumors were
stratified by the nuclear area, no significant difference in prognosis was
observed between the high (n = 35) and low (n = 134) groups (log-rank,
p = 0.25, Fig. 5h). Stratification using the nuclear major axis showed better
separation of prognostic groups, but the difference remained statistically
insignificant (log-rank, p = 0.093, Fig. 5i).

Taken together, these findings indicate that HIPT_unfrozen2 outper-
forms conventional methods in classifying tumor ploidy and stratifying
prognosis based on pathological images of HCC.

Discussion
Polyploidy is a hallmark of the human cancer genome and a crucial cause of
chromosomal instability (CIN), predisposing cells to chromosomal aber-
rations. As CIN promotes cancer heterogeneity and clonal evolution, can-
cers exhibiting polyploidy and CIN have a poor prognosis regardless of the
organ of origin, as shown by recent pan-cancer analyses29,30. Assessment of
polyploidy can thus help evaluate the risk of cancer evolution and predict
tumor prognosis. In this study, we developed amethod that can rapidly and
efficiently assess HCC ploidy and predict poor prognosis utilizing AI-based
recognition of HE pathological image features.

Previous studies exploring the impact of polyploidy in cancer have
often been based on genomic analysis methods, including SNP arrays and

Table 1 | Clinicopathological information of 169 HCC cases classified by tumor ploidy determined using the
HIPT2_unfrozen2 model

Variables Diploid Polyploid p value

Number of cases 113 56 -

Age 73 ± 8.09 72 ± 8.1 0.64 1

Sex (Proportion of male) 77.0% 76.80% 0.98 2

Body mass index 23.0 ± 4.2 23.4 ± 4.3 0.897 1

Etiology HBV 30 15 0.63 4

HCV 29 13

HBV+HCV 2 3

Alcohol 25 10

MASLD 19 6

PBC 0 1

Unknown 8 8

Fibrosis (Inuyama classification) F0/F1/F2/F3/F4/Unknown 7/19/41/21/22/3 5/8/11/10/19/3 0.18 4

Child Pugh Classification A (5−7)/B (7−9)/C (10−15) 105/8/0 55/1/0 0.28 2

Tumor size (cm) 3.2 ± 2.75 2.9 ± 4.32 0.96 3

BCLC staging 0/A/B/C 5/64/37/12 6/27/9/9 0.636 4

Differentiation well/mod/por 17/89/7 1/44/11 0.0004 4

Pathological structure Micro-trabecular 68 20 0.005 2

Macro-trabecular massive 13 14 0.04 2

Pseudo-glandular 8 6 0.61 2

Compact 14 5 0.68 2

Scirrhous 2 8 0.004 2

Unclassified 8 3 -

Presence of PGCC 39 37 0.0001 3

Serum total bilirubin (mg/dL) 0.7 ± 0.36 0.8 ± 0.38 0.19 3

Serum albumin (g/dL) 4.0 ± 0.52 4.1 ± 0.49 0.69 3

ICG15 (%) 10.6 ± 7.22 11.9 ± 9.56 0.403 3

PT-INR 1.02 ± 0.12 1.02 ± 0.09 0.91 3

Platelet (×104/μL) 18.5 ± 7.23 16.25 ± 10.5 0.69 3

Serum creatinine (mg/dL) 0.87 ± 1.2 0.8 ± 0.47 0.24 3

eGFR (mL/min/1.73m2) 63.3 ± 21.9 69.9 ± 23.5 0.12 3

Serum alpha fetoprotein (ng/mL) 6.00 ± 37371.2 27.5 ± 27264.7 0.0002 3

Serum des-γ-carboxy prothrombin (mAU/mL) 90 ± 82144.5 127 ± 27784.3 0.402 3

HE images of 169 HCC cases in our hospital were analyzed using the HIPT2_unfrozen2 model (cutoff polyploidy score = 0.363).
1 Student t test, 2 Pearson’s χ2 test, 3 Wilcoxon-Mann-Whitney U test, 4 Cochran-Armitage trend test. eGFR estimated glomerular filtration rate,HBV hepatitis b virus,HCV hepatitis c virus,MASLDmetabolic
dysfunction associated steatotic liver disease, PBC primary biliary cholangitis, ICG15 indocyanine green 15-min retention test, PT-INR prothrombin time-international normalized ratio, eGFR estimated
glomerular filtration rate.
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Fig. 3 | Clinicopathological features of polyploid HCC assessed using the
HIPT_unfrozen2 model. a Serum AFP levels. Error bars indicate mean ± SD.
b, c Pathological classification of HCC differentiation and structure.
d Immunostaining of UBE2C. Scale Bar 50μm. e Heatmap indicating ploidy scores
assessed using the HIPT_unfrozen2model and clinicopathological features. f t-SNE
plots of tile images. Probabilities of polyploidy assessed using the HIPT_unfrozen2

model and clinicopathological features of the tumors are shown.A total of 169HCCs
were analyzed. SC scirrhous,MacroTmacro-trabecular,MicroTmicro-trabecular, C
compact, PGpseudo-glandular, UCunclassified, PIVKAprotein induced by vitamin
K absence or antagonist II, HBV hepatitis b virus, HCV hepatitis c virus, MASLD
metabolic dysfunction associated steatotic liver disease, PBC primary biliary
cholangitis.
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whole-genome sequencing, which are expensive, labor-intensive, and time-
consuming. Moreover, inferring tumor ploidy from genomic data is chal-
lenging and can sometimes be inaccurate owing to factors such as tumor
purity and intratumor heterogeneity31,32. Contamination by diploid non-
tumor cells is also unavoidable in flow cytometric analysis, making accurate
evaluation of tumor ploidy challenging. In contrast, chromosome FISH,
which was used to obtain a reference label in this study, enables direct
assessment of chromosomenumbers in individual tumor cells. However, its
labor-intensive procedures limit its scalability,making it difficult to conduct
high-throughput assessments on large sample sets or wide tissue regions. In
addition, genomic analysis, flow cytometry, and FISH all require expensive
and specialized technologies, presenting considerable barriers to their
routine use in clinical practice. In contrast to these methods, our AI-based

pathological image recognition approach provides a simple and cost-
effective method for tumor ploidy evaluation, requiring only HE-stained
images. It also enhances throughput and enables ploidy assessment across
large tumor regions while capturing intratumoral heterogeneity, which was
previously unattainable. Furthermore, unlike genomic analysis and flow
cytometry, our technology preserves pathological information and enables
integration with additional analyses to study tumor architecture and the
microenvironment. Combining it with spatial transcriptomics and emer-
ging techniques will further enhance our understanding of tumor ploidy.

Among the advantagesof ourAI-basedploidy assessmentpipeline, one
of the key features is its capacity to process large areas at high resolution. In
ourmodel, ploidy status spanningwide tumor areas couldbedetermined for
each small 280 μm square area, corresponding to a 2048 × 2048-pixel tile.

Fig. 4 | Analysis of HCC cases in the TCGA dataset. a Conformity between GD
detected by genomic analysis and the ploidy status assessed using our AI models.
b, c Kaplan–Meier curves displaying overall survival. Statistical difference was
determined by log-rank test. dAneuploidy score. A total of 350HCC cases in TCGA

dataset were divided by their GD status detected by genomic analysis and their
ploidy status assessed using the HIPT_unfrozen2 model. Error bars indicate
mean ± SD.
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Furthermore, the results were comprehensively assessed with the visuali-
zation of intratumoral heterogeneity. As cancers exhibit diverse cellular
features within a single tumor, the above-mentioned advantages would
contribute to accurate tumor ploidy assessment and prognostic prediction.
Another advantage of our AI model is that it can comprehensively deter-
mine HCC ploidy using single-cell morphology information, tissue archi-
tecture, and accompanying nontumor cells.We successfully developed such
AImodels, capable of utilizing diverse histological information, by adopting
a balanced approach, selectively fine-tuning encoder layers while leveraging
self-supervised pretraining. In contrast to conventional deep-learning
methods, where encoders and aggregation layers are trained either jointly or
separately, our approach expanded the trainable parameters for learning
complex ploidy features while reducing overfitting and preserving valuable
representations. Consequently, our model, which incorporates an inte-
grative pathological assessment, wasmore effective for prognosis prediction
than conventional image-based methods that rely solely on nuclear mor-
phology (Fig. 5)27. While ploidy estimation relying on nuclear morphology
remains valuable for studies focusing on single-cell characteristics of tumor
cells, our model will be particularly useful in clinical settings where deter-
mining treatment strategies based on tumor properties is essential. Since
pathologists still cannot infer HCC ploidy from HE-stained images alone,
our AI model provides a pathway to integrating ploidy assessment into
clinical practice.

These advantages may have permitted more precise identification of
HCC with poor prognosis using our AI model than that provided by the
SNP array-based ploidy assessment in the TCGA dataset. Notably, the
HIPT_unfrozen2 model distinguished HCCs with a higher aneuploidy
score and poorer prognosis among those classified as GD-negative by the
SNP array. The aneuploidy score, reflecting numerical chromosomal
abnormalities, is often used as a surrogate for CIN, as tracking chro-
mosomal changes over time or measuring their diversity is impractical in
bulk genomic analyses. However, complementary abnormalities within a
tumor may be averaged out, and CIN does not always correlate with the
aneuploidy score. Like tumor ploidy, CIN is often difficult to assess from
bulk genomic data. It remains unclear whether tumors with an elevated
aneuploidy score (Group 2 in Fig. 4) were actually polyploid because of
inaccuracies in genomic data analysis or were near-diploid cancers that
had lost chromosomes from a polyploid state33–35. However, given the
close relationship between polyploidy and CIN, and their shared
importance in predicting cancer prognosis and guiding treatment stra-
tegies, the HIPT_unfrozen2 model, which efficiently evaluates ploidy-
related tumor aggressiveness and identifies HCC with poor prognosis by
incorporating pathological information, is precious for clinical man-
agement of HCC. Further investigation is needed to determine whether
the HIPT_unfrozen2 model specifically focuses on a subgroup of poly-
ploid HCC with poorer prognosis.

Table 2 | Clinicopathological information of 350HCCcases in TCGAdataset classified by the tumor ploidy determined using the
HIPT2_unfrozen2 model

Variables Diploid Polyploid p value

Number of cases 123 227 -

Age 62 ± 12.5 60 ± 13.4 0.35 1

Sex (Proportion of male) 72.4 65.4 0.18 2

Tumor stage T1 75 98 0.002 4

T2 / T2a / T2b 23 65

T3 / T3a / T3b 22 52

T4 1 11

N.D. 2 1 -

LN metastasis N0/N1/N.D. 89/0/34 154/3/70 0.48 2

Distant metastasis M0/M1/N.D. 93/1/29 162/2/63 1 2

Pathological stage Stage I 72 92 0.005 4

Stage II 23 60

Stage III / IIIA / IIIB / IIIC 22 56

Stage IV / IVA / IVB 1 4

Tumor grade G1/G2/G3/G4/N.D. 21/69/29/3/1 25/99/89/10/4 0.001 4

Child-Pugh grade A/B/N.D. 97/8/18 112/13/102 0.47 2

Vascular invasion Macro/Micro/None/N.D. 6/25/85/7 9/63/111/44 0.07 4

Fibrosis 0 - No Fibrosis 42 31 0.26 4

1,2 - Portal Fibrosis 9 19

3,4 - Fibrous Speta 14 14

5 - Nodular Formation and Incomplete Cirrhosis 3 5

6 - Established Cirrhosis 30 35

N.D. 25 123 -

Serum prothrombin time (sec) 1.1 ± 4.89 1.1 ± 5.05 0.294 3

Serum alpha fetoprotein (ng/mL) 9 ± 14255 23 ± 162348 0.040 3

Serum albumin (g/dL) 4.05 ± 5.5 4 ± 1.03 0.502 3

Platelet (×103/μL) 212.5 ± 61667 211 ± 86405.6 0.675 3

Serum total bilirubin (mg/dL) 0.7 ± 1.49 0.7 ± 1.63 0.549 3

HE images of 350 HCC cases in TCGA dataset were analyzed using the HIPT2_unfrozen2 model (cutoff of polyploidy score = 0.363).
1 Student t test, 2 Pearson’s χ2 test, 3 Wilcoxon-Mann-Whitney U test, 4 Cochran-Armitage trend test. N.D. not determined.
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Analysis of a largenumberofHCCsutilizing thehighprocessing ability
of AI confirmed previous findings about some features of polyploid HCC,
including the MTM structure and UBE2C overexpression6, and unveiled
some new aspects of polyploid HCC in the present study. Among the
pathological structures of HCC, the scirrhous type was markedly more
prevalent in polyploid HCC than in diploid HCC, although it was relatively
rare compared to the MTM structure. This suggests that tumor cell ploidy
may significantly influence spatial tumor architecture and the micro-
environment. As polyploidization may involve humoral factor secretion36,
further investigation into its microenvironmental impact is warranted.
Moreover, our AI model detected polyploid HCC arising from various
etiologies of liver diseases. Since the hepatic zones and genomic alterations
affected by liver injury vary depending on the etiology, our findings suggest
that the carcinogenic mechanisms and origins of polyploid HCC can stem
from a variety of genomic abnormalities and locations.

The application of AI-based pathological image analysis for tumor
ploidy assessment has the potential to revolutionize clinical practice.
Diagnosis of tumor ploidy using our technology allows for the rapid
evaluation of tumor ploidy in parallel with histopathological diagnosis
from HE-stained tissue. AI-based tumor ploidy assessment, completing a
4 mm2 region in just 0.06 s on our computational setup, is remarkably
faster than other ploidy evaluation methods. This speed allows tumor
ploidy to be used as a prognostic indicator without delaying treatment,
enabling personalized strategies like intensive treatments and appropriate
follow-ups for patients with poor outcomes. Moreover, clinical research
targeting KIF18A, a promising therapeutic target for tumors with poly-
ploidy or chromosomal instability3,37–39, is currently underway
(NCT05902988). If such treatments become clinically viable, our tech-
nology will serve as a companion diagnostic tool for targeted treatments
of polyploid cancers.

Fig. 5 | Comparison of methods for HCC ploidy assessment. a Performance of
PUB classification for assessing HCC ploidy. Tumors exhibiting both PGCC pre-
sence andUBE2Coverexpressionwere classified as PUB-positive. b, cKaplan–Meier
curves for overall survival. A subset of Dataset 3 (n = 118) with available UBE2C
immunostaining was analyzed according to PUB classification and HIPT_un-
frozen2 assessment. Correlation between nuclear morphology features extracted by
HEIP and the polyploidy score calculated by HIPT_unfrozen2. Median nuclear area

(d) andmedian nuclearmajor axis (e) were derived from169 cases inDataset 3. ROC
curves and AUC values for assessing HCC ploidy using median nuclear area (f) or
median nuclear major axis (g) extracted by HEIP. Dataset 2 was used for analysis.
Kaplan–Meier curves for overall survival analyzed based on themedian nuclear area
(h) or median nuclear major axis (i). Cases in Dataset 3 were stratified using cutoff
values determined by ROC curves in f, g based on the Youden method. In
b, c, f, g, statistical significance was assessed using the log-rank test.
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In conclusion, we have developed a method for assessing HCC ploidy
using AI-based image recognition. Similar strategies can be applied to
various types of cancer. Given the aggressive features of polyploid and CIN-
positive cancers originating in different organs, AI-based assessment of
tumor ploidy could contribute to the identification of treatment-resistant
cancers with poor prognosis, regardless of the cancer type. Prospective trials
using sampleswithvaried processing conditions acrossmultiple institutions
will validate the utility of our technology and facilitate clinical application.

Data availability
The numerical data plotted (source data) in the graphs in Figs. 3a, 4d, 5d, e,
and Supplementary Fig. 8 are in Supplementary Data 1. The datasets gen-
erated and analyzed during the current study are not publicly available
because of patient privacy concerns, but are available from the corre-
sponding authors upon reasonable request.

Code availability
The complete source code for both the model and data preprocessing is
available at https://github.com/abebe9849/LiverNploid40.
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AFP alpha-fetoprotein
FFPE formalin-fixed paraffin-embedded
FISH fluorescence in situ hybridization
HCC hepatocellular carcinoma
UBE2C ubiquitin-conjugating enzyme E2
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