Effect of Ground Green Tea Drinking for 2 Weeks on the Susceptibility of Plasma and LDL to the Oxidation ex vivo in Healthy Volunteers.

SYUZOU GOMIKAWA, YUICHI ISHIKAWA, WAKAKO HAYASE, YUKO HARATAKE, NAMIKO HIRANO, HIROMI MATUURA, AKIYO MIZOWAKI, AKIKO MURAKAMI, and MAO YAMAMOTO

Faculty of Health Sciences, Kobe University School of Medicine, Kobe 654-0142, Japan.

Received 17 August 2007 /Accepted 10 December 2007

Key words: green tea, catechins, antioxidants, LDL

Catechins in green tea have been shown to reduce a risk of coronary heart disease in epidemiological studies. Also, it has been reported catechins have hypolipidemic and antioxidant effects. Then, we investigated the effects of ground green tea drinking on the susceptibility of plasma and low-density lipoprotein (LDL) to the oxidation by CuSO4 ex vivo, and also evaluated daily food consumption using semiquantitative questionnaire. Five healthy female subjects consumed ground green tea (1.5 g / 3 times/day) for 2 weeks after a washout period of 1 week, when they drank water instead of tea. After 2-week tea drinking, the subjects drank water again. They also filled food and drink-frequency questionnaires during 4 weeks to assess daily foods consumption to estimate the oxidizability of plasma and LDL. We measured the lag time of conjugated dienes formation of plasma and LDL to oxidation by CuSO4. The lag time of conjugated dienes formation are increased in all subjects after ground green tea consumption from 67± 19 to 118± 42 min in plasma and from 47± 6 to 66± 10 min in LDL. The cholesterol contents in plasma and LDL decreased 10 mg / dl after ground green tea consumption. The β-carotene, α-tocopherol, vitamin C and uric acid contents in plasma did not change after ground green tea consumption. The superoxide dismutase (SOD) activity in plasma also remained unchanged during this study periods. These findings indicated that ground green tea consumption decreased susceptibility of plasma and LDL to oxidation and also modulated cholesterol metabolism and might prevent initiation and progression of atherosclerosis.

Green tea (Camellia sinensis) is a widely consumed beverage in the world, and contains antioxidants such as catechins, ascorbic acid, α-tocopherol and β-carotene [9]. Epidemiological studies have reported a reduced risk of coronary heart disease in subjects with a high flavonoid intake through tea and other dietary sources [7, 12, 15], but findings are still conflicting [28]. Also, two conflicting epidemiological studies have reported on the association of green tea consumption and serum cholesterol level [36, 37]. These major mechanisms have been considered; hypolipidemic effect [1, 3, 21, 22, 25, 39, 40, 43], antioxidant effect [8, 42], antihypertensive effect [27] and other effects [11, 16]. It has been reported that catechins in green tea inhibited cholesterol absorption in intestine of rats [22, 25], the activities of lipids enzymes [1, 21, 39, 40] and the apoB secretion in HepG-2 cells [43] and also increased LDL receptor [3]. Also, the catechins are group of polyphenolic compounds; they have been shown to possess strong antioxidant properties for plasma and
EFFECT OF GREEN TEA DRINKING ON PLASMA AND LDL OXIDATION

LDL oxidation in vitro and ex vivo [8, 42]. Yamanaka et al. [42] showed that (-) epicatechin (EC) and (-) epigallocatechin (EGC) had a strong inhibitory effect of LDL oxidation in vitro. We also reported the inhibitory activities of EC and (-) epigallocatechin gallate (EGCg) on LDL oxidation by CuSO4, and the antioxidant activity of EGCg to LDL oxidation was stronger than that of EC in vitro [8]. As other effects, catechins have been shown to exert pharmacological effects including antiproliferation [11], and antiadhesion [16]. Therefore, the consumption of tea catechins may reduce plasma cholesterol, susceptibility to oxidation and the risk for coronary heart disease. However, there are not always consisted with the reports about antioxidant ex vivo [13, 16, 38] and hypolipidemic effects [23, 44] of the catechins in human.

Then, we investigated the effects of pulverized ground green tea drinking on the susceptibility of plasma and LDL to oxidation by CuSO4, and on cholesterol concentration in plasma in healthy Japanese females and also evaluated daily food consumption using semiquantitative questionnaire [35].

MATERIALS AND METHODS

Materials

(+) catechin (CA), EC, (-) epicatechin gallate (ECg), EGC, EGCg, sulfatase (EC 3.1.6.1, Type VIII: from Abalone Entails, S-9754) and β-glucuronidase (EC 3.2.1.31, Type X-A, from E. Coli, G-7896) were obtained from Sigma chemical (St. Louis, Mo., USA). Ground green tea (senncha) was obtained from Ujimoritoku (Mathubara, Osaka, Japan). Acetonitril, ethyl acetate, N,N'-dimethylformamide and all other chemicals were purchased from Wako Pure Chemical Industries (Osaka, Japan).

Human subjects

All subjects gave oral informed consents for study participation before experiments. All subjects were nonsmoking volunteers. The characteristics of five healthy female volunteers in this study were as follows; age 21±1 years old; body weight 50± 4 kg; height 158± 6 cm; body mass index (BMI) 20±1 Kg /m². Blood chemical tests were as follow: plasma Triglycerides 67±37 mg/dl; Total cholesterol 187±33 mg/dl; LDL-cholesterol 104±32 mg/dl; HDL-cholesterol 68±15 mg/dl; phospholipids 221±29 mg/dl; aspartate aminotransferase (AST) 17± 1 IU/l; alanine aminotransferase (ALT) 12± 3 IU/l.

Study design

After a washout period of 1 week without tea drinking, subjects consumed ground green tea (1.5 g/ 3 times/ day) for 2 weeks. During the next 1 week, the subjects drank water daily. In addition to no-tea drinking, subjects were not allowed to consume alcoholic beverages, antioxidant vitamins (ascorbic acid, α-tocopherol, carotene), chocolate and more than 2 fruits/day during the intervention. All subjects also were directed not to change daily eating and drinking habits other than instructions. For the confirmation, we examined food and drink intakes about each subjects with a semiquantitative food frequency questionnaire during all experimental periods [35].

Blood sampling

Venous blood samples were collected in tube containing 1mg / ml EDTA from subjects after 12 h fasting each weeks. Plasma was prepared by low speed centrifugation (3,000 r.p.m., 10 min.) within 30 min after blood sampling.

LDL preparation

LDL (1.025<d<1.050, 541,000×g, 2 h, 4 °C) was obtained by preparative ultracentrifugation by methods described previously [8]. Isolated LDL was dialyzed against 0.01 M phosphate buffer (pH 7.4), 0.16 M NaCl and 0.2 µM EDTA (PBS-EDTA) saturated
with \(\text{N}_2 \) gas for 20 h at 4 °C. We confirmed purity of LDL using SDS-polyacrylamide gel electrophoresis according to the method of Graham [10].

Susceptibility of plasma and LDL to oxidation *ex vivo*

The methods of susceptibility of plasma and LDL were previously described elsewhere [8]. Briefly, the effect of consumption of green tea on plasma oxidation *ex vivo* was determined using the method of Kontush et al [17]. Plasma sample were incubated at 37 °C in the presence of PBS-EDTA buffer containing 50 \(\mu \text{M} \text{CuSO}_4 \) and conjugated dienes production was measured by the changes of the absorbance at 234 nm using a Shimadzu Model UV-1600 PC spectrophotometer. The lag time of LDL to oxidation by 5 \(\mu \text{M} \text{CuSO}_4 \) was determined using the method of Esterbauer et al [4].

Analysis of catechins contents in ground green tea and plasma

The catechins contents in ground green tea were determined using previously described method. The ground green tea (n=6) used in this study contained CA of 7.32 ±0.43 mg/g, EC of 15.5±2.7 mg/g, ECg of 20.6±3.3 mg/g, EGC of 51.2±2.7 mg/g, EGCg of 87.6±11.2 mg/g and total catechins of 183±13 mg/g. The catechins concentrations in plasma were determined using previously described method [8]. Briefly, plasma sample were incubated with a mixture of \(\beta \)-glucuronidase and sulfatase, and the free form of catechins were obtained. After extraction into ethyl acetate, the catechins were analyzed by HPLC.

Chemical analysis in plasma

Plasma cholesterol, triglycerides and phospholipids concentrations were determined using enzymatic colorimetric methods [8]. HDL-cholesterol, LDL-cholesterol and uric acid were measured enzymatically by commercially available kit (Daiiichi Pure Chemicals Co., LTD, Tokyo). Vitamin C, \(\alpha \)-tocopherol and \(\beta \)-carotene concentrations in plasma were measured by HPLC [2, 14, 34]. Plasma thioarbituric acid reactive substances (TBARS) were determined by fluorometric assay [41]. Superoxide dismutase (SOD) activity in plasma was measured by commercially available kit (Wako Pure Chemical Industries, Osaka, Japan).

\(\alpha \)-tocopherol and \(\beta \)-carotene analysis in LDL

\(\alpha \)-tocopherol and \(\beta \)-carotene in LDL were extracted with ethanol : hexane (10 : 1), and the extracts were concentrated by \(\text{N}_2 \) gas. The concentrated sample was then dissolved with the mobile solvent for HPLC analysis. The HPLC analysis was performed using the method of Shidouji [33] with some modification: apparatus, Model 802 (Gilson Co, Ltd., Middleton, WI, U.S.A.), UV-master Model 1001 (M and S Instrument, Osaka, Japan), column Develosil ODS-80Ts (4.6×250 mm; TSK gel, TOSO CO., Japan), eluent (methanol: butanol: 10 mM sodium acetate buffer, pH 3.6 = 80: 20: 1), flow rate (\(\alpha \)-tocopherol: 0.5 ml/min; \(\beta \)-carotene: 1.0 ml/min.). The detection was performed at 292 nm (\(\alpha \)-tocopherol) and 450 nm (\(\beta \)-carotene).

Statistical analysis

The values are expressed as mean ± standard deviation (S.D.). Group mean were compared by a one-way analysis of variance (ANOVA) followed by paired t-test to identify significantly different means between the two groups. Values were considered to be significantly different at p<0.05. These statistical analyses were performed with EXCEL Office software on a Windows ME.

RESULTS

Daily nutrients intakes estimated by semiquantitative food frequency questionnaire

Table 1 shows the daily nutrients intakes estimated by semiquantitative food frequency questionnaire in each experimental periods. There were no differences in the energy,
EFFECT OF GREEN TEA DRINKING ON PLASMA AND LDL OXIDATION

protein, lipids, carbohydrate, cholesterol and fibers during all experimental phases. Also, vitamin E, carotene, and vitamin C intakes did not change during all experimental periods.

Effect of ground green tea drinking on plasma levels of lipids and antioxidants

Total cholesterol and LDL-cholesterol contents in plasma after drinking ground green tea was decreased compared with 0 week, but HDL-cholesterol was not changed in all periods. Triglycerides and TBARS contents in plasma were not changed after ground green tea consumption (table 2). α-tocopherol, β-carotene, uric acid contents and SOD activity in plasma remained unchanged during this study periods. Plasma vitamin C contents was decreased at 2 weeks after drinking ground green tea, but increased at 3 weeks compared with 2 weeks (table 2).

<table>
<thead>
<tr>
<th>Table 1. Daily nutrient intakes estimated by semiquantitative food frequency questionnaire.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
</tr>
<tr>
<td>Drink</td>
</tr>
<tr>
<td>Energy (Kcal/day)</td>
</tr>
<tr>
<td>Protein (g/day)</td>
</tr>
<tr>
<td>Carbohydrate (g/day)</td>
</tr>
<tr>
<td>Lipids (g/day)</td>
</tr>
<tr>
<td>Cholesterol (mg/day)</td>
</tr>
<tr>
<td>Fiber (g/day)</td>
</tr>
<tr>
<td>Vitamin E (mg/day)</td>
</tr>
<tr>
<td>Carotene (μg/day)</td>
</tr>
<tr>
<td>Vitamin C (mg/day)</td>
</tr>
</tbody>
</table>

Values are mean ± S.D. N = 5.

<table>
<thead>
<tr>
<th>Table 2. Effect of ground green tea drinking on plasma levels of lipids and antioxidants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dl)</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dl)</td>
</tr>
<tr>
<td>TBARS (nmole/ml)</td>
</tr>
<tr>
<td>α-tocopherol (mg/ml)</td>
</tr>
<tr>
<td>β-carotene (μg/ml)</td>
</tr>
<tr>
<td>Vitamin C (μg/ml)</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
</tr>
<tr>
<td>SOD activity (%)</td>
</tr>
</tbody>
</table>

TBARS: Thiobarbituric acid reactive substances. SOD: Superoxide dismutase.

†: p<0.02 when compared with 0 week. ‡: p<0.003 when compared with 0 week.
§: p<0.004 When compared with 0 week. ¶: p<0.004 when compared with 0 week.
*: p<0.02 when compared with 1 week. **: p<0.02 when compared with 2 week.

Values are mean±S.D. N=5.
Effect of ground green tea drinking on the lag time of conjugated dienes formation in plasma and LDL

Figure 1 shows that the lag time in conjugated dienes production in plasma by CuSO₄ was increased after drinking green tea, but was decreased after the abstention of drinking green tea. The lag time of conjugated dienes formation on LDL oxidation was increased at 1 week after consumption of ground green tea (fig. 1), and decreased after the abstention of drinking ground green tea.

Effects of ground green tea drinking on plasma catechins contents

Figure 2 shows the plasma catechins concentrations after ground green tea consumption. The concentrations of catechins in plasma were not changed after ground green tea consumption.

Effect of ground green tea drinking on α-tocopherol and β-carotene in LDL

Figure 3 shows the effects of ground green tea on α-tocopherol and β-carotene in LDL. The concentrations of α-tocopherol and β-carotene in LDL were not changed after ground green tea consumption.

DISCUSSION

We investigated the effects of ground green tea drinking on the susceptibility of plasma and LDL to the oxidation by CuSO₄ ex vivo and plasma lipids content in this study. This study demonstrated that the ground green tea consumption for 2 weeks suppressed the susceptibility of plasma and LDL to the oxidation by CuSO₄, and resulted the decrease of cholesterol content in plasma and LDL. There are numerous reports about the effects of green tea drinking in human on the susceptibility of plasma and LDL to the oxidation [8, 13, 16, 38]. However, these results are not consistent [8, 13, 16, 38]. Then, we used the ground green tea (pulverized green tea leaves) to increase the amount of consumption of catechins and examined food intakes about each subjects with a semiquantitative food frequency questionnaire during all experimental periods, and guided each subjects about food intakes. The intakes of the nutrients during study were not changed in 3 periods by the nutritional guidance.

There are not always consisted with the reports about the decrease of cholesterol contents in plasma and LDL in human after the ingestion of green tea extracts [5, 23, 28, 38, 44]. For example, van het Hof et al. [38] reported that daily consumption of 900 mL green tea (freeze dried green tea 3g/ 900 ml /day. Total catechins: 21.4 % by wt) for 4 weeks had no effect on serum cholesterol. Princen et al. [28] also showed that healthy smoker consumed freeze dried green tea (3 g/900 ml/day: total catechins: 852 mg/day) for 4 weeks, but green tea consumption had no effects on cholesterol in plasma, LDL and HDL. Freese et al. [5] observed that healthy female volunteers ingested green tea extract powder (3 g/day: total catechins 630 mg/day, other polyphenol 180 mg/day) for 4 weeks, but cholesterol levels in plasma remained constant during the experimental periods. On the other hand, Maron et al. [23] reported that 120 subjects consumed theaflavin-enriched green tea extract (150 mg of green tea catechins, 150 mg of other green tea catechins, and 75 mg of theaflavin) for 12 weeks, and the green tea extracts decreased serum and LDL-cholesterol by 11.3% and 16.4%, respectively. In this study, we showed the decrease of cholesterol contents in plasma and LDL by the consumption of ground green tea (1.5 g/3 times/day). This is in agreement with several previous observations of the experimental animals and human [22, 23, 25]. This may be contributed to the excretion of cholesterol into feces [25], the activities about lipid enzymes [1, 21, 39, 40], the apoB secretion [43] and uptake in cells [3].
Figure 1. Effect of green tea on the lag time of conjugated dienes formation in plasma and LDL.

Plasma †: 0 Week. VS. 1 Week. (p < 0.03).
§: 0 Week. VS. 3 Week. (p < 0.005).
‡ : 0 Week VS. 2 Week. (p < 0.01).
¶: 2 Week. VS. 3 Week. (p < 0.0001).

LDL †: 0 Week. VS. -1 Week. (p < 0.00001).
§: 0 Week. VS. 1 Week. (p < 0.003).
‡: 0 Week VS. 3 Week. (p < 0.00001).

Values are mean ± S.D. N = 5.

Figure 2. Catechins concentration in plasma after ingestion of ground green tea.

EGCg: Epigallocatechin gallate. Values are mean ± S.D. N = 5.
The susceptibility of plasma and LDL to oxidation by CuSO₄ was decreased after ground green tea consumption, and increased after the abstention of drinking ground green tea. There are many reports about effects of green tea drinking on the susceptibility of plasma and LDL to the oxidation [8, 13, 16, 38]. However, these reports were not always consistent [8, 13, 16, 38]. In negative reports about effect of green tea drinking on susceptibility of plasma and LDL to oxidation, the quantity of the assimilated green tea might not be enough to body weight. The guidance of the meal ingestion may be insufficient. In this study, all volunteers were young female. The susceptibility of plasma and LDL to oxidation may be affected by estradiol during menstrual cycle. Maziére et al. [24] reported that estradiol inhibited LDL oxidation in the range of concentrations from 5 to 50 μM in vitro. However, Ruiz-Sanz et al. [31] reported that the LDL oxidizability indices (lag time before the onset of propagation and the maximal oxidation rate) did not change during menstrual cycles. During follicular phase of high concentration of 17β-estradiol (147.9±88.5 pg/ml, 0.54 nM), the oxidizability did not changed. The concentrations of estrogen required to demonstrate antioxidant activity in vitro study exceed levels observed during menstrual cycle. Therefore, it is conceivable that the menstrual cycle did not affect the susceptibility of LDL to oxidation in this study.

In this study, daily consumption of ground green tea for 2 weeks had no effect on serum TBARS. There are reports that lipid peroxide contents in plasma is not changed or decreased after green tea consumption [16, 26]. Nakagawa et al. [26] reported that phosphatidylcholine hydroperoxide levels in human plasma decreased at 60 min after ingestion of green tea extract (total catechins 254 mg). On the other hand, van het Hof et al. [38] reported that green tea consumption for 4 weeks did not affect serum malonaldehyde in human.

We measured the catechins contents in the plasma sampled after 12 h fasting. The concentration of catechins in plasma did not change. We showed in previous report [8] that EGCG and total catechins contents in plasma were increased at 3 h after consumption of ground green tea. Lee et al. [18] reported that the elimination of half lives catechins in a single oral dose of green tea were 1.7-3.4 h. Therefore, it is conceivable that most catechins in blood were excreted in urine [19], and catechins concentrations in plasma did not change in this study. However, catechins may be increased in plasma in several hours after ground green tea consumption, and catechins may be scavenging the oxygen radicals in plasma [8].

In addition to catechins, the ground green tea contained the antioxidants such as α-tocopherol, β-carotene and vitamin C. There was no significant difference in

\[
\begin{align*}
\text{Figure 3. Effect of green tea on } &\alpha\text{-tocopherol and } \beta\text{-carotene in LDL.} \\
\text{Values are mean } &\pm \text{S.D. } N=5.
\end{align*}
\]
EFFECT OF GREEN TEA DRINKING ON PLASMA AND LDL OXIDATION

α-tocopherol and β-carotene concentrations in plasma after ground green tea consumption. Also, there was no significant difference in the intakes of these antioxidant substances during all experimental periods. Vitamin C concentration in plasma at -1 weeks were significantly higher than those at 0 week. It is conceivable that there were the restriction of fruits and its juice from -1 week to 3 weeks. Although the cause about the increase of vitamin C content in plasma from 2 weeks to 3 week is unclear, catechins may reduce the oxidation of vitamin C by active oxygen, and the effects may be delayed. Further study is needed to elucidate the effect of catechins on vitamin C oxidation.

We investigated the effects of ground green tea drinking on uric acid and SOD activity in plasma, but the consumption of ground green tea did not significantly influence uric acid and SOD activity in plasma. These findings are consistent with other reports [28, 38]. It is well known that α-tocopherol, β-carotene and cholesterol in LDL have effect of the sensitivity of LDL to the oxidation [6, 20, 29]. Frei and Gaziano et al. [6] found that an increased cholesterol content of LDL was associated with an increased oxidation susceptibility of the lipoprotein. Total cholesterol contents in LDL after drinking ground green tea decreased compared with 0 week in this study. Therefore, the changes of susceptibility of LDL to oxidation after the ground green tea consumption may be due to the changes of cholesterol contents rather than α-tocopherol and β-carotene in LDL.

In conclusion, the ground green tea consumption for 2 weeks results the decrease of cholesterol content in plasma and LDL, and suppressed the susceptibility of plasma and LDL to the oxidation by CuSO₄. The further study is mandatory to elucidate the mechanisms.

REFERENCES

lipoprotein. Arteriosclerosis 89: 175-182.

